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Abstract: Electric power reliability is one of the most important factors in the social and economic
evolution of a smart city, whereas the key factors to make a city smart are smart energy sources
and intelligent electricity networks. The development of cost-effective microgrids with the added
functionality of energy storage and backup generation plans has resulted from the combined impact
of high energy demands from consumers and environmental concerns, which push for minimizing
the energy imbalance, reducing energy losses and CO2 emissions, and improving the overall security
and reliability of a power system. It is now possible to tackle the problem of growing consumer
load by utilizing the recent developments in modern types of renewable energy resources (RES) and
current technology. These energy alternatives do not emit greenhouse gases (GHG) like fossil fuels
do, and so help to mitigate climate change. They also have in socioeconomic advantages due to
long-term sustainability. Variability and intermittency are the main drawbacks of renewable energy
resources (RES), which affect the consistency of electric supply. Thus, utilizing multiple optimization
approaches, the energy management system determines the optimum solution for renewable energy
resources (RES) and transfers it to the microgrid. Microgrids maintain the continuity of power
delivery, according to the energy management system settings. In a microgrid, an energy management
system (EMS) is used to decrease the system’s expenses and adverse consequences. As a result,
a variety of strategies and approaches are employed in the development of an efficient energy
management system. This article is intended to provide a comprehensive overview of a range of
technologies and techniques, and their solutions, for managing the drawbacks of renewable energy
supplies, such as variability and load fluctuations, while still matching energy demands for their
integration in the microgrids of smart cities.

Keywords: microgrids; energy management; smart city; renewable energy sources; photo voltaic;
energy storage; energy management system

1. Introduction

The terminology "smart city" refers to more efficient, equitable, and adaptable cities
which will be created using socioeconomic, environmental, and technological systems [1].
In terms of power, the essential aspects of a smart city are a reliable electricity supply
from renewable energy sources (RES) and the application of energy efficient techniques
throughout the system; i.e., at least 80% of the city’s structures should be energy efficient.
Smartness is defined as the intelligent integration of all infrastructural and socioeconomic
activities that pave the way for a brighter future, not simply technologically. We believe that
only by intelligent use of human, financial, and technical resources, and in consideration of
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environmental, demographic, social, infrastructural, and economic issues, can this ideal
future can be realized.

Renewable energy resources (RES) such as wind, biomass, solar, tidal energy, and hydro-
power are examples of RES that can ameliorate the problem of the increasing greenhouse
effect while emitting zero pollutants into the atmosphere [2–5]. RES have the potential to
make a major contribution to the mitigation of fossil fuels and global climate change [6].
Renewable energy (RE) should be cost-effective, and come from clean energy source [7]
which is also environmentally friendly [8]. In many papers ([9] and the references included
there), several scholars explored the common concepts of renewable energy resources
(RES), distributed generation (DG), and microgrids. To satisfy the ever-increasing energy
demands, power plants are being built near major consumption points. Energy supply is
becoming much more competitive, resulting in lower prices [10,11].

In terms of the power paradigm, smart energy and stable electricity networks are
some of the most important aspects of smart cities; in fact, electricity grids and information
and communication networks are the two technological features that primarily characterize
smart cities. Smart energy and power networks are enabling microgrids to be integrated
into smart cities, which not only facilitate the integration of renewable energy sources
but also enable new energy-related value-added services [12]. A microgrid is defined as
a collection of loads, energy storage facilities, and small-scale generating systems [13].
A microgrid is an electrically bound portion of a distribution network that collects locally in
order to form a self-sufficient energy system. Distributed generating sources, energy storage
devices, and controlled loads must all be integrated to produce a self-sufficient energy
system [14,15]. Microgrids may provide a dependable source of electricity in remote regions
where the development or expansion of electrical grids is physically and/or economically
difficult. Although these systems are unable to make use of the main grid, they serve
as valuable test beds for developing suitable control functions capable of maintaining a
reliable supply of electricity [16–19]. Hybrid energy systems (HES) are frequently used to
provide electrical power for a variety of uses, such as residences or farm land in outlying
areas where there is no grid extension [20]. Hybrid energy systems offer high reliability
and lower costs as compared to systems that have only one energy source [21].

Microgrids offer real-time energy management. Each has its own communication
system that is necessary for managing the energy between generation and demand [22].
Microgrids play a major role in the transition of urban infrastructure into a smart city.
Water, transportation, and other infrastructures rely on distribution grids for fundamental
services; microgrids, equipped with modern information and communication technology,
are grids that are suitable for smart cities. Microgrids operate in one of the two modes:
isolation and grid [23,24]. As illustrated in Figure 1, microgrids can be classified by the
types of energy source they use, such as renewable, nonrenewable, or hybrid.

Renewable energy resources (RES) such as wind and solar do not produce constant
amounts of electricity. As a result, predicting and maintaining the generation from these
resources is extremely challenging, which may result in fluctuations in the continuous
power supply. The microgrid’s reliability and the preservation of the energy supply–
demand balance are both important. The latter problem becomes more prevalent in
stand-alone mode when there are few sources available to satisfy demand [25–27].
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Figure 1. Classification of MGs.

2. Microgrid EMS-Based Network

Microgrids frequently experience trouble with supplying and consuming energy due
to the shortcomings of renewable energy sources [28]. To deal with energy management
systems, microgrids have their own communication networks (EMS). The energy man-
agement system provides optimum solutions to microgrids, which are developed from
various mathematical techniques to discover optimal solutions. Using to these approaches,
the microgrid can reduce the uncertainty and load varying issues of renewable energy re-
sources [18]. The EMS of a microgrid operates in two modes, centralized and decentralized,
ensuring that generation and load are matched [29–31]. Microgrids are also categorized
based on their modes of operation, which include power type, supervisory control, phase,
and application, as illustrated in Figure 1.

The intelligent communication module in the microgrids EMS uses the best decision
making strategies, including human–machine interface modules (HMI), DERs for load
forecasting, and a supervisory control and data acquisition module, which delivers the
best decision and tries to increase the revenue of the microgrid by using communication
network [32–35].

However, while the initial installation costs of renewable energy-based plants are
higher than those of conventional plants, the maintenance and operating costs are lower
and will continue to fall as technology advances. As the behavior of renewable sources
is usually intermittent, it is better to employ several resources when they are accessible.
Hybridization of renewable resources enhances the efficiency, reliability, and economics of
the power system. These hybrid MGs, as illustrated in Figure 2, can be used as stand-alone
units, grid-connected units, or in conjunction with traditional units [36–38].

The intermittent nature of an RES/microgrid is due to the fact that loads are connected
to solar and wind energy sources rather than the grid, and these sources have a major
influence on loads. When there is a shortage in these sources due to environmental factors,
the loads stay connected without any supply. Frequency fluctuations, voltage fluctuations,
and harmonic distortion are the primary concerns with power quality. The system will
become unstable as a result of voltage fluctuations caused by changes in irradiation levels,
which will have a direct impact on the solar and wing-based stand-alone systems’ reliability.
The same is applicable in the wind example, where variations in wind speed have an impact
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on the whole hybrid system. Accurate forecasting and scheduling are necessary to minimize
these effects [39–42].

Figure 2. Hybrid microgrid.

Several scholars have addressed these energy management techniques utilizing vari-
ous solution methodologies in order to accomplish optimal and effective MG operation.
The subsections that follow provide a comprehensive critical study of these techniques
and solutions.

3. Classical Methods of EMS
3.1. Energy Management by Linear/Non Linear

E. Dursun and O. Kilic [43] investigated the behaviors of three methods on a stan-
dalone hybrid system, including PV/wind/PEMFC, where PV and wind were considered
primary sources and PEMFC was considered a backup source. The author’s main objective
in this work was to increase the efficiency of the fuel cell (FC) and provide a continuous
power supply in the hybrid system with no fluctuations. The researcher used established
power management techniques to assess battery efficiency, taking into account the battery
state-of-charge (SOC) and surplus power from the primary source in a Matlab/Simulink
control algorithm (wind and PV).

J. Ahmad et al. [44] offered a cost-effective energy management technique based on
mixed integer linear programming. Researchers are looking at the influences of hybrid
systems on capital and operational expenses. One can reduce load peaks by keeping an eye
on this kind of generation’s intermittency and instability. The cost function is computed
using linear programming, and the size of the microgrid is optimized using HOMER
software through simulation. An energetic and economic analysis of three distinct solar
assisted heat pump (SAHP) systems using the best operational approach was published
in [45]. Three distinct types of SAHPs, and solar collectors and battery sizes, were discussed
in this article. The mixed-integer linear programming (MILP) method lowered the heating
system’s running costs, and numerical analysis was carried out using TRNSYS and Refprop
9.1 software.

Moazeni and J. Khazaei [46] examined the convergence time and reduced the cost
function of the water–energy microgrid by using two techniques, mixed-integer nonlinear
programming (MINLP) and MILP. MILP was utilized in the first approach to minimize the
cost function and achieve optimality in the MINLP formulation. In the second technique,
MILP was used to simulate the nonlinear behavior of the cost function using MATLAB
software. In [47], three alternative techniques were presented to investigate the perfor-
mance of a hybrid system that included solar panels (PV) and battery storage devices.
TRNSYS software was used for performance testing, and size was determined manually.
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HOGA (also known as iHOGA) and HOMER software were used for genetic algorithm
optimization, and the state of charge of the battery and the pressure in the hydrogen tank
were studied.

M. Nemati, M. Braun [48] introduced two algorithms used for microgrid work schedul-
ing, unit commitment and economic dispatch. The latter is a superior genetic algorithm
(GA), and the former is an MILP that was enhanced. This study also introduced a unique
technique for dealing with MILP restriction and a new lithium battery aging model. To eval-
uate the microgrid model and compare it to others in different situations, GA and MILP
optimizers were used. In [49], the mix-mode energy management technique (MMEMS) was
presented, which optimizes the cost-effectiveness microgrid operation and provides the
optimal battery sizing for economic microgrid operation. The author solved economic dis-
patch problems by using three techniques, on/off mode, continuous mode, power-sharing
mode. Linear programming (LP) was used to solve energy management problems such
as power-sharing and continuous modes, whereas MILP was used to solve on/off mode
(MILP). The size problem of the battery was solved by the particle swarm optimization tech-
nique.

Anglani and Braun [50] presented an economically optimized energy management
system (OEMs) for a microgrid which minimized the fuel consumption of a remote tem-
porary military base (FOB) featuring diesel generators. The linear programming method
was used to optimize the cost-effectiveness of a diesel generator fuel consumption. The
suggested semi-continuous optimization model was solved using two approaches. Only
one generator was operational in the first approach, and both generators were operational
in the second, but only one generator output was used at a time. Moreover, the rain
flow method was used to deal with battery sizing and charging/discharging between
operational and capital costs.

Helal and Hanna [51] examined the energy management system that deals with
the optimal scheduling of a hybrid AC/DC microgrid for remote areas. The energy
management problems were formulated by the MINLP and the goal was to keep the daily
operating costs as low as possible. All the EMS simulations were done via MATLAB
where the optimizer was modeled via the GAMS environment. For hybrid microgrids in
remote locations, [52] employed a two-stage stochastic optimization method. The size and
uncertainty problems in a hybrid microgrid were solved using LP and MILP optimization.
The MILP optimization yielded the most stable system, but the LP model yielded the
most cost-effective system. Python was used to implement the optimization algorithms. A
summary of recent studies of EMS based linear/nonlinear has been compiled in Table 1.

Table 1. Summary of recent studies of EMS based on linear/nonlinear programming.

Reference System Configuration EMS Approach Remarks

[43] PV/wind/PEMFC MILP via
MATLAB/Simulink

To improve the fuel cell membrane’s efficiency and
ensure a continuous energy flow in the hybrid

system, three strategies were examined in this paper.

[44] Hybrid Micro grid MILP via HOMER
Author Minimized operational cost, and reduce
intermittency, instability, and load peaks of the

hybrid system.

[45] SAHP/PV/Thermal (PV/T)
collectors

MILP via TRNSYS and
Refprop 9.1

The researcher reduces the operational cost of the
Heating system, battery sizes, and study SAHP

operational strategy.

[46] Water Energy micro gird MILP and MINLP via
MATLAB

The researcher applied two techniques and
analyzed the convergence time, cost function,

and nonlinear behavior of the model of a micro grid.

[47] PV/ battery storage systems MILP and GA via TRNSYS
and HOMER

Three strategies were proposed in this paper to
analyze the performance testing and SOC of the

battery.
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Table 1. Cont.

Reference System Configuration EMS Approach Remarks

[48] Multi cell grid
structure/CEMS MILP and GA via MATLAB

Two algorithms were proposed in this paper for
scheduling the unit commitment and economic

dispatch of micro grids.

[49] Grid-tied MG LP/MILP/PSO via
MATLAB

The author analyzed the ON/OFF mode,
continuous mode, power-sharing mode of grid-tied

micro grid, and optimized the BES system.

[50] FOB/BESS/PV MILP/Rain flow method via
MATLAB

The author minimized the fuel consumption of
diesel generators and analyzed battery

charging/discharging between operational and
capital costs.

[51] Hybrid AC/MG MINLP via MATLAB an
GAMS

The author presented a technique to deal with
optimal scheduling of hybrid micro grids.

[52] Isolated hybrid MGs LP/MILP via python
Two-stage stochastic optimization technique is

presented in this paper to solve sizing and
uncertainty problems in the hybrid micro grids.

3.2. Energy Management Based on Rule Based and Dynamic Programming

Merabet and Ahmed [53] presented a real-time energy management system of a hybrid
microgrid using wind, solar, and battery. An online rule-based optimization technique
is introduced to manage the switching operation among battery charging/discharging,
off mode of the PV system, and load shedding. In a laboratory based hybrid microgrid
experiment, power converters and control algorithms provide efficient and stable operation
of EM between different sources in microgrids. Testing and control of microgrids are
performed in MATLAB/Simulink, and real-time monitoring is performed by integration
with RT-LAB.

M. Jafari and Z. Malekjamshidi [54] provided an economic strategy for an energy
management system that incorporates a set of PV panels, a fuel cell panel, and a battery in
both grid-connected and off-grid modes of a hybrid microgrid. Dynamic programming (DP)
deals with the off-line optimization, and real-time monitoring is done by the rule-based
controller, which ensures the optimal control of power flow. MATLAB’s graphical user
interface was used to keep track of and record data from the proposed energy management
system in both scenarios, sunny and cloudy PV generation. While [55] offered optimal
distributed generation scheduling to accomplish economic and environmental output, and
ensure power security and stability in microgrids. In this study, two primary objectives
were considered: economic and environmental objectives. As a result, this work considered
multi-objective and multi-parametric optimization, and the dynamic performance of battery
problems. Multi-parametric dynamic programming was used to optimize the energy
management of microgrids. Simulation results were used to assess the model’s efficiency.

Shuai and Fang [56] proposed two optimal operations in microgrids for real-time
energy management. The first one is MINLP in which Ac power flow and battery storage
are considered. The second one is approximate dynamic programming (ADP), which
was formulated for optimization problems. The microgrids are connected to the grid.
The solution of the Bellman equation determines sequential decisions. The optimization
algorithm’s efficiency was tested numerically using a microgrid benchmark and MATLAB.
In [28], they focused the economical energy management of real-time microgrids while
considering load fluctuations and power flow constraints. The Markov decision process
(MDP) was formulated for real-time scheduling. To achieve optimal real-time scheduling,
approximate dynamic programming (ADP) with a recurrent neural network (RNN) was
developed. To understand the optimal value function, an iterative method approximate
policy iteration (API) is used. The simulation model was analyzed in MATLAB R2015a. A
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summary of recent studies of EMS based on rule/dynamic programming is presented in
Table 2.

Table 2. Summary of recent studies of EMS based on rule/dynamic programming.

Referenc System Configuration EMS Approach Remarks

[53] wind/solar/battery

Rule-based via
MAT-

LAB/Simulink/
RT-LAB

Author analyzed the switching
operation among battery

charging/discharging, off mode
of the PV system, and load
shedding of micro grids.

[54] PV/FC/Battery DP/Rule-based
via MATLAB

Author proposed an optimal EM
plan between off-grid and

grid-connected modes of micro
grids

[55] Hybrid MG
Multi-parameter

dynamic
programming

Optimal scheduling of DGs and
battery sizing problems are

considered in this paper

[56] Hybrid MG ADP/MINLP via
MATLAB

In this paper, real time EM of MG
is proposed

[28] Hybrid MG MDP/ADP/RNN
via MATLAB

The researcher proposed
algorithms were derived to
achieve optimal real time

scheduling

4. Meta-Heuristic Approaches of EMS
Energy Management Based Particle Swarm Optimization

The PSO algorithm’s basic elements are the swarm’s population and the number of
particles in the swarm. The PSO introduces a search space where these particles move
according to a set of basic formulae. These particles define their own best positions and
the swarm’s overall best position in order to discover the optimal position in relation to
each other. They arrive to control the growth of the swarm after they have discovered their
optimal places. The process of determining the optimal place is ongoing, although it is not
precise [57–61]. The population of birds is depicted in Figure 3, with birds seeking for food
in a search area.

C. Li, X. Jia, and Y. Zhou [62] presented an energy management technique to keep
the load curve stable in microgrids. Three types of multi-agent models were investigated
in this paper: the underlying case, the demand response case, and energy storage case.
The authors described a solution to solve these three factors and compare the results
by applying the metaheuristic approach that is particle swarm optimization. Moreover,
the author combined two algorithms, adaptive search and the chaotic search method, to
enhance the PSO to an ACPSO algorithm, which reduces the number of iterations using a
Jade and MATLAB environment. In [63] was an improvement of the energy management
of the solar-diesel hybrid generator. Two cases of optimum scheduling were investigated
in this study. When the load was large in the first scenario, the amount of additional solar
energy had to be raised in proportion. When the load was low in the second scenario,
the diesel generator’s efficiency had to be considered. The author created a multi-objective
optimization model, which he solved numerically using the PSO optimization approach.
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Figure 3. Particle swarm optimization.

Hossain and Pota [64] calculated real-time energy management and electricity pricing
by using the meta-heuristic algorithm. In this article, a modified PSO was developed
to cope with the cost function and battery charging and discharging activities. The cost
function graph may be modified by the need for real-time energy management in the
community using MATLAB, as shown in the simulation results. In [65], a multi-period
power flow approach based on successive approximations (SA) and an energy manage-
ment methodology that follows the master salve strategy to cope with the particle swarm
optimization (PSO) were employed in tandem to determine the optimal solution of a
Battery storage system (BSS). Simultaneous quadratic programming was used in MATLAB
software to evaluate simulations.

T. Kerdphol and Y. Qudaih [66] proposed an EMS to prevent MGs from instability
and system breakdown during extreme situations. The author derived PSO from the
integration of demand response (DR) and evaluated the optimal size of the BESS system to
boost the system’s performance, safety, and stability. For the real-time energy management
of standalone microgrids, particle swarm optimization (PSO) has been employed in [67,68].
A summary of recent studies of EMS based on rule/dynamic programming is presented in
Table 2.

5. Energy Management Based on Genetic Algorithm

Charles Darwin’s idea of natural evolution influenced genetic algorithms [69–71].
As part of the algorithm, the most appropriate individuals are selected for reproduction
in order to create children in the following generation. The genetic algorithm is based on
two main operations, crossover and mutation. Crossover shows the probability of a pair of
parents mating [72–76]. The basic process of GA is shown in Figure 4.

Genetic algorithms (GAs) are one of the most popular population-based heuristic
optimization approaches, and they are utilized to address a wide range of issues [41].
The ESS economic strategy and an actual matrix formatted GA-based smart EMS technique
were developed by C. Chen and S. Duan [33] for grid-connected MGs. When it comes to
predicting solar energy, the NN model is utilized. The net present cost of the ESS during its
lifespan is considerably increased by an economic model based on its capital, operating,
and maintenance expenses, and revenue from energy arbitration. Smart EMS includes
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generator bids, storage bids, and electricity market revenue to reduce the MG’s operating
costs while satisfying the energy balance limitations and physical constraints of the DERs.

Figure 4. Architecture of the genetic algorithm.

Mohammed and Amirat presented [77] an intelligence-based evolutionary algorithm
(GA) for optimizing the EMS and design of a freestanding hybrid microgrid that includes
wind, PV, tidal, and batteries. This proposed GA approach was generated to lower the
hybrid system’s cost. Using the genetic algorithm approach, [78] investigated the energy
management of a freestanding hybrid microgrid that included a wind turbine, solar panels,
a diesel generator, and a battery. The GA was used to solve size difficulties, reduce costs,
and alleviate pollution emission concerns. Furthermore, utilizing HOMER, GA was utilized
to solve optimal meet load demand problems in order to increase the relevance of RES.

A summary of recent studies of EMS based on particle swarm optimization is pre-
sented in Table 3.

Table 3. A summary of recent studies of EMS based on particle swarm optimization.

Reference System Configuration EMS Approach Remarks

[62] Multi agent MG PSO/ACPSO via Jade and
MATLAB

Author proposed three methods to stabilize the load
curve and compare it with each other.

[63] Solar/Diesel hybrid
Generator PSO via MATLAB Author studied two cases of optimal scheduling of

hybrid generator.

[64] Grid-connected MGs PSO via MATLAB
Author proposed modified algorithm to deal with

cost function and battery charging discharging
modes.

[65] DC-DGs
PSO/SA via

MATLAB/sequential
programming

The researcher proposed master salve strategy to
find the solution of optimal BSS.

[66] Hybrid MGs PSO The Research evaluated optimal BESS system to
enhance the performance of MGs.

6. Artificial Intelligence Approaches in EMS
6.1. Energy Management Based on Neural Networks

The requirements of modern industries are not fulfilled through conventional control
techniques, so it is time to deal with problems with artificial intelligence methods, such as
ANN, whose basic structure is shown in Figure 5. The proposed control technique can also
handle nonlinear systems [79]. Similarly to human beings, ANNs learn through examples.
ANN is designed for specific applications, such as pattern recognition and classification of
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data through a learning process. In a biological system, learning requires adjustments to
the synaptic connections between neurons, just like ANN. It has numerous capabilities for
complex systems, such as prediction, modeling, and control of performance [80–82].

Figure 5. The architecture of an exemplary artificial neural network.

K. Roy and K. K. Mandal [83] presented a cost-effective EM model of a hybrid micro-
grid including a PV/WT/storage system. In this paper, real-time optimal scheduling of
the microgrid was introduced to decrease the cost of electricity production. Using MAT-
LAB/Simulink, the author developed a recurrent neural network (RNN) to assess demand
response and an ant–lion optimizer (ALO) algorithm to address economic dispatch issues,
and the results were compared to some existing methods. Jaganmohan Reddy and Pavan
Kumar [84] developed a load forecasting EMS model of a microgrid that predicted short,
medium, and long-term forecasts. The artificial neural network (ANN) was used in this
study to assess real-time statistical forecasting of microgrids in various situations, such as
daily, seasonal, and annual. The Levenberg–Marquardt back propagation algorithm was
used to train the layers of the ANN, which enhanced coordination between microgrids
in various places. MATLAB/Simulink was used to create this model. Another study [85]
suggested a cost-effective EEMS for optimal wind turbine (WT) scheduling, an energy
storage system (ESS), and an optimization module in interconnected microgrids. In this
study, an artificial neural network (ANN) was developed to anticipate wind speed, and an
ESS was utilized to decrease wind turbine fluctuation. Bacterial foraging optimization
(MBFO) was used to address multi-objective problems. In terms of economic and environ-
mental efficiency, this study showed that the EEMS can successfully coordinate the power
generation of DERs and ESS.

K. Roy and K. Krishna Manda presented [86] a hybrid strategy to reduce the cost of
producing renewable energy resources. A hybrid microgrid consisting of a PV/WT/storage
system was considered in this paper. The ANN and BFOA techniques were used to control
power flow between the sources and the grid. The proposed techniques were implemented
via MATLAB/Simulink, and they compared the results with GA and ABC algorithms. In
[87], optimized scheduling of a MG solved the uncertainty of wind power/MT/FC/ESS.
A probabilistic concept, APCCI, was applied to investigate the problems in the MG. To in-
crease the accuracy of the wind turbine, wavelet decomposition was applied and results
were sent to an ANN. The ANN provided optimal scheduling and enhanced the perfor-
mance of MG. In [88], the authors presented an AI technique to reduce the demand for
energy in peak hours and maximize the use of renewable energy sources such as PV/WT.
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ANN and GA were used to provide optimal scheduling and manage the real-time energy
demand in the domestic sector.

6.2. Energy Management Based on Fuzzy Logic

Many hybrid renewable energy systems have successfully employed fuzzy controllers
as energy control and management units (EMU) [89–94]. Many logic values dealing with
reality make up fuzzy logic. Fuzzy logic deals with Boolean values, such as 0 and 1 logics,
which are both totally true and completely false. Figure 6 depicts the basic architecture of
fuzzy logic.

Figure 6. The architecture of fuzzy logic.

I. Abadlia proposed [95] the power management of renewable energy sources (RES)
of a standalone hybrid microgrid. In this system, PV/FC/BES and PEMFC are used
to ensure the continuous supply of power. Fuzzy logic energy management (FLPMS)
was used in this paper to achieve the power management goals. FLPMS maximized the
hydrogen production and continuous charging/discharging of the battery to meet the
deficit power demands. In [96], the authors presented the energy management of a grid
connected microgrid using a renewable energy source. The goals of minimizing the power
fluctuations and keeping the battery SOC under a secure limit were achieved by the low
complexity fuzzy logic controller.

L. Ciabattoni [97] used the fuzzy logic inference method to create a high-resolution
model for household power usage. The aim of this research was to investigate the real-
world economic advantages of altering load behavior using a novel fuzzy model and
economic impact analysis. In [98], DSM was controlled by a fuzzy controller and a smart
home scheduler. Costs and energy usage were minimized via fuzzy logic. The paper [99]
describes a microgrid energy management system that incorporates PV/FC/battery with
numerous grid-connected and off-grid modes. In the EM unit, fuzzy logic is utilized to
identify the appropriate modes of operation for real-time and long-term anticipated energy
generation data. Moreover synchronized bus-voltage balance is used to increase microgrid
performance. The authors performed energy distribution and cost analysis.

A peak hour energy demand solution for an HVAC residential system was presented
in [100]. Two methods were derived in this paper. The first one is supervised fuzzy logic
learning (SFLL) to deal with electrical pricing, and the second one is an adaptive fuzzy logic
model (AFLM) proposed in order to sense, understand, and adjust to new user preferences.
In addition, a "house energy simulator" with an HVAC system, thermostat, and a smart
meter was built in MATLAB-GUI to emulate an adjustable residential building. Fuzzy
based dynamic EM was presented in [101] to increase the efficiency of a DC microgrid;
fuzzy logic was implemented to improve the optimal charging and discharging of HESS .
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7. EMS Based on Other Approaches

To improve the power output of each individual source, minimize the cost of energy,
or maximize storage systems, several optimization methods are employed in general.
The most commonly utilized optimization techniques and algorithms addressed in the lit-
erature study are shown in Figure 7, and a comparative analysis of optimization techniques
is listed in Table 4.

Figure 7. EMS optimization techniques.

Table 4. Comparative analysis of optimization techniques.

Optimization Techniques Advantage Disadvantage

MILP

Linear programming (LP) is a quick way to solve
problems because the linear constraints lead to a
convex feasible region, ensuring that the global
optimal solution is achieved in many scenarios.

It shows limited abilities while dealing
with non-differentiateable and
continuous objective functions

MINLP
MINLP provides multiple optimal solutions of
complex models which is an edge over MILP

approach.

A large number of iterations are
required (high computational power).

Dynamic programming (DP)
It can reduce the problem into sub problems,

optimize each one, and moreover resolve
sequential problems

Due to the large number of recursive
functions, the implementation is

complex

Genetic algorithms (GA)

To identify the best solution, population-based
evolutionary algorithms employ operations like

as crossover, mutation, and selection.
An acceptable convergence speed. It is widely

employed in a variety of fields.

Parameters for crossover and mutation,
and population and stopping, must be

defined.

Particle swarm optimization
(PSO)

Good results in scattering and optimization
problems.

Complicated computational
requirements.

Neural Networks
It is utilized in situations where a quick

evaluation of the learned target function is
necessary.

High computational power Required

Fuzzy logic (FL) To analysis the decision of the system FL
provides best solution.

Don’t have the capability of learning
which neural networks have.

In [102], Roshandel devised an optimization method for finding the best cost-effective
design for a stand-alone MG with a lithium battery storage system while taking into account
various energy management control methods. To assess the battery’s stability and longevity,
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a complex model based on electrochemistry is used to assume the lifetime of lithium
batteries. The results of a comparison of optimization techniques for the management
of stand-alone MGs were published in reference [103]. Linear programming and genetic
algorithms are typically used in this method. The findings show that managing regulated
loads can save money by lowering operating costs and increasing the usage of renewable
energy sources.

In [104], a series of approaches such as mixed integer programming for energy manage-
ment optimization and the probabilistic Markov model to reflect PV generation uncertainty
were used to study the development and MG optimization. A linear model was used to
calculate the MG’s lifetime. The authors of [105] presented an energy management system
for a hybrid system that included wind, PV, and diesel. The service works both on and off
the grid. Transitions between micro and utility grids are also controlled by a mechanism
built within the inverter.

There are other factors that are not included in this paper that are required to identify
the most suitable communication systems for microgrids, focusing on overall microgrid
operations such as the transient response of distributed resources. When it comes to
sensitive data transfer, such as protective relays, switches, and fault detectors, it is necessary
to improve dependability and minimize delay problems. It is also important to optimize
communications technology in order to improve control system functions such as reactive
power regulation and power quality improvement control [32].

Moreover, in [106] a microgrid energy management system, research comparing Wi-
Fi-based servers against wired connectivity was carried out. The wireless infrastructure
provides a dependable, easy-to-build, and scalable infrastructure for a small-scale micro-
grid control system, although it has larger communication delays than cable LAN. Data
from wireless communications experiments show that Wi-Fi is a viable choice for WAN
infrastructure [107]. The energy efficiency of Li-ion batteries as energy storage devices in
microgrids is being studied. The energy efficiency of a Li-ion battery is determined by its
energy efficiency during charging and discharging scenarios [108,109].

8. Conclusions and Future Trends

Distributed energy resources, demand response, electric cars, and local controllers
are the main building blocks of microgrids to be applied for smart cities. A central con-
troller and communication devices are used to manage energy in a microgrid. This article
presented a critical and comprehensive review of microgrid energy management issues
and possible solutions. The fundamental goal of the EMS is to provide grid-connected and
off-grid microgrids with minimal operating costs, optimal scheduling, and uninterrupted
power delivery. As a result, the microgrid energy management framework is a multi-
objective subject that addresses economic, technological, and environmental concerns of
the smart city.

Various optimization approaches were explored in this study to find optimal solutions
for microgrid operators’ coordination. The assessment was mostly based on smart city
requirements, particularly in terms of electricity consumption and management. Through
the use of a variety of effective methods, these strategies explore alternatives, opportunities,
and challenges to achieve energy management objectives. Then using a computer system,
each microgrid operator receives the most cost-effective, least interrupted in terms of power
flow, solution.

These approaches are chosen on the basis of their adequacy, practicability, and usability
for optimal growth of microgrids. MG EMS also takes into account environmental concerns
of conventional generators, the life expectancy of batteries, efficient DR integration, power
loss and robustness, and the privacy of the customer. Some of these objectives have been
the subject of studies. To achieve efficient operation of microgrids, there is still much
work to be done, including improving customer privacy issues, analyzing the reliability
of efficient communications systems, and managing costs. From the perspective of the
energy system, effective energy management for lithium batteries is necessary. Thus, more
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accurate degradation models to accurately estimate battery lifespan in real-time operating
scenarios need to be created.
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