LIST OF FIGURES

1.1a The chemical structures of the selected triazine herbicides in this study page 7
1.1b The chemical structures of the selected triazine metabolites in this study page 7
1.1c The chemical structures of the selected phenylurea analytes in this study page 8
1.1d The chemical structures of the selected chloracetanilide analyte in this study page 8
1.2 Degradation of atrazine to its metabolites in the environment page 10
1.3 Breakdown of triazine compounds to its metabolites in the environment page 11
1.4 The deuterated internal standards used in this study page 11
1.5 The percentage of surface water samples exceeding 0.1 µg l\(^{-1}\) for the most common pesticides in England and Wales from 1998 to 2007 page 18
1.6 The percentage of surface water samples exceeding 0.1 µg l\(^{-1}\) for the most common pesticides in England and Wales from 2002 to 2007 page 19
1.7 Ethylene Bridged Hybrid [BEH] particle behind UPLC\(^{®}\) technology page 37
2.1 Photograph of the Acquity UPLC used in this study page 48
2.2 MassLynx schematic of the sample manager page 49
2.3 MassLynx schematic of the binary solvent manager page 50
2.4 MassLynx schematic of the TUV detector page 51
2.5 Photograph of the internal parts of the Acquity UPLC page 52
2.6 Peak dispersion by longitudinal diffusion page 55
2.7 The van Deemter plot page 56
2.8 Plot of Absorbance against wavelength of the UV/Vis of the initial analytes considered in this study page 59
2.9 Non linear gradient profiles in the UPLC system page 62
2.10 The elution of seven analytes using method mei 128 page 96
3.1 Photograph of the Micromass Quattro Micro tandem mass spectrometer used in this study page 101
3.2 Schematic diagram of the Quattro Micro tandem mass spectrometer page 102
3.3 Mechanism of ion formation in atmospheric ionisation by electrospray page 104
3.4 Z-Spray ionisation system page 104
3.5 Schematic diagram of the quadrupole in the mass spectrometer page 105
3.6 Resonant and non resonant quadrupole ion paths page 105
3.7 The tandem mass spectrometer mode of operation page 106
3.8 A diagram of the instrument set up to optimise parameters page 108
3.9 The low and high mass resolution setting adjustments page 109
3.10 The [M+H]^+ and the two transitions ions of atrazine page 115
3.11 The [M+H]^+ and the two transitions ions of propazine page 115
3.12 The [M+H]^+ and the two transitions ions of isoproturon page 116
3.13 The [M+H]^+ and the two transitions ions of diuron page 116
3.14 The [M+H]^+ and the two transitions ions of atrazine desisoproyl page 117
3.15 The [M+H]^+ and the two transitions ions of atrazine desethyl page 117
3.16 The [M+H]^+ and the two transitions ions of simazine page 118
3.17 The [M+H]^+ and the two transitions ions of cyanazine page 118
3.18 The [M+H]^+ and the two transitions ions of alachlor page 119
3.19 The [M+H]^+ and the two transitions ions of chlortoluron page 119
3.20 The [M+H]^+ and the two transitions ions of linuron page 120
3.21 The [M+H]^+ and the two transitions ions of atrazine d5 page 120
3.22 The [M+H]^+ and the two transitions ions of propazine-2-hydroxy page 121
3.23 The [M+H]^+ and the two transitions ions of isoproturon d6 page 121
3.24 The [M+H]^+ and the two transitions ions of diuron d6 page 122
3.25 The [M+H]^+ and the two transitions ions of simazine d10 page 122
3.26 The [M+H]^+ and the two transitions ions of alachlor d13 page 123
3.27 Calibration curve for atrazine page 127
3.28 Calibration curve for propazine page 127
3.29 Calibration curve for isoproturon page 128
3.30 Calibration curve for diuron page 128
3.31 Calibration curve for atrazine desisoproyl page 129
3.32 Calibration curve for atrazine desethyl page 129
3.33 Calibration curve for simazine page 130
3.34 Calibration curve for cyanazine page 130
3.35 Calibration curve for alachlor page 131
3.36 Calibration curve for chlortoluron page 131
3.37 Calibration curve for linuron page 132
3.38 Calibration curve for atrazine d5 page 132
3.39 Calibration curve for propazine-2-hydroxy page 133
3.40 Calibration curve for isoproturon d6 page 133
3.41 Calibration curve for diuron d6 page 134
3.42 Calibration curve for simazine d$_{10}$ page 134
3.43 Calibration curve for alachlor d$_{13}$ page 135
4.1 Illustration of the elution protocol for SPE page 142
4.2 Photograph of the ASPEC XL4 automated SPE system page 143
4.3 The Interaction HLB sorbent page 146
4.4 The interaction of MCX sorbent page 146
4.5 The interaction of Chromabond C18 sorbent page 147
5.1 Sampling points on the River Wye page 162
5.2 The Boat Launch Steps at Symonds Yat East on the River Wye page 163
5.3 The source of the River Ogmore page 164
5.4 River sampling point on the River Ely at St Georges page 165
5.5 Sampling points on the River Ogmore and River Ely page 166
5.6 Source of the River Taff (Taff Fawr) in the Brecon Beacons, Storey Arms page 167
5.7 Water collection at Symonds Yat East page 168
5.8 Water collection in 2.5 litre silanised bottles. page 169
5.9 A screenshot of the QuanLynx software reporting the data page 173
5.10 The reproducibility results of atrazine, propazine and isoproturon page 178
5.11 Five day reproducibility study for simazine d$_{10}$ at 500 µg l$^{-1}$ page 180
5.12 The series of reproducibility results for the analytes and standards showing both transitions. page 185
5.13 Mean peak area response for primary transition of atrazine (100 µg l$^{-1}$) over seven days showing ±2σ and ±3σ page 186
5.14 Mean peak area response for primary transition of linuron (100 µg l$^{-1}$) over seven days showing ±2σ and ±3σ page 186
5.15 River Ogmore source water percentage recovery of analytes described in Table 5.10 prior (tab 142) and post (tab 145) extraction spiked water comparison page 191
5.16 River Wye analyte concentration of the 12 compounds studied expressed as a percentage of the MDL of each compound page 200
5.17 River Ogmore, analyte concentration of the 12 compounds studied expressed as a percentage of the MDL of each compound page 206
5.18 River Ely, analyte concentration of the 12 compounds studied expressed as a percentage of the MDL of each compound