APPENDIX 1 THE ARTICLE PRODUCED DURING THIS RESEARCH AND THE RESPONSE TO IT
Construction of reinforced concrete multi-storey office buildings: a simulation model for time/cost calculations

FIRST STAGE COMPUTER SIMULATION MODEL FOR THE DURATION AND COST ESTIMATION OF THE CONSTRUCTION OF A TYPICAL MULTI-STORREY CONCRETE FRAMED OFFICE BUILDING PROVIDING RAPID RESPONSE TO CHANGES IN INPUT VALUES AND THEIR EFFECT ON THE DURATION AND COST OF THE PROJECT

E. Laptali, N. Bouchlaghem and S. Wild

University of Glamorgan, Department of Civil Engineering and Building, Treforest, Pontypridd, Mid Glamorgan, CF37 1DL, UK

The current model is confined to multi-storey concrete framed office buildings with particular types of foundations and roof and choices within the building envelope, but it has the potential for further development to include wider choice. The flexibility provided by Leonardo will allow, claim the authors, a staged development without affecting the structure of the model.

Le modèle actuel est limite aux immeubles de bureaux à étages, à ossauire béton, dotés de certains types de fondations, de toitures et d'éléments d'enveloppe. Mais il présente un intéressant potentiel de développement pour la prise en compte de choix beaucoup plus variés. Les auteurs estiment que la souplesse d'exploitation inhérente au Leonardo permettre un développement phasé sans atteinte à la structure même du modèle.

Keywords: concrete frame construction, simulation, time/cost model, UK

Introduction

Duration and cost estimation of construction projects involves handling a number of interacting variables some of which are easily predictable and quantifiable, whereas others rely on intuition and experience. The selection of manpower materials and plant and possible method of work are some of the many factors which affect project duration and cost. The complexity of the problem lies, on the one hand, in the large number of different combinations of activities required to perform a certain task and on the other hand, in the unpredictability of external influences. Furthermore the large amount of data to be handled can render the task unmanageable.

Various computer-based time and cost models have been developed since the 1980s. Current effort is directed towards integrated time and cost models where simulation generation and optimization methods are used [1-3].

Newton [3] discusses the difference between these methods. 'Simulation presents the structure of a problem where structure refers to how the problem is conceptualized in terms of its boundary, the variables considered and the inter-relationships between variables. A set of input data is provided by the user and then the outcome is evaluated based on a range of other considerations. The 'generation method' produces a set of candidate solutions. This is a more mechanical approach.'
where for a range of starting values, the model is capable of generating an entire collection of potential solutions. Monte Carlo Simulation is an example of simulation applied to the generation method. The "Optimization method" evaluates a series of solutions and searches for the best solution for the given criteria.

Each method has its limitations in providing a realistic solution to the practical problems of estimating time and cost, and future refinements are expected to reduce these limitations. One approach to improving effectiveness would be to combine two or more of the existing methods which is a principal feature of the current research project.

A multi-storey reinforced concrete office building has been chosen on which to base the model. It was considered that the disadvantages of construction of in situ concrete framed buildings [4], especially being more labour intensive than the other frame types, provide a considerable basis for the application of combination of simulation and optimization techniques.

The duration and cost of construction of a multi-storey reinforced concrete office building is calculated through the simulation model. The model provides a set of choices for the selection of materials and plant and possible methods of work. It also requires the user to input the quantities of work, gang sizes and the quantity of plant required, lag values between activities, output rates, unit costs of plant, labour costs and indirect costs. A linked bar chart is drawn automatically by using the data available from the simulation model.

The optimization component, which is still under development also uses the data provided by the simulation model. The aim is to evaluate sets of solutions, in terms of time vs cost to obtain the optimum time corresponding to the minimum cost under the given schedule restrictions.

This paper presents the structure of the simulation model, the variables, and the procedures considered for duration and cost calculations. Additionally the validation and limitations of the simulation model are discussed.

Data acquisition

The data/information required to be built into the model were accessed from a number of sources. These sources are:

1. Bills of quantities and bar charts of reinforced concrete office buildings which were obtained from two main contractors in the UK.
2. Information acquired during interviews with construction Planners, Estimators and Researchers. Five 2 h interviews were conducted with two Chief Planners. Two 1 h interviews were conducted with two Chief Estimators and the in-house Researchers at one of the contractors provided cost analysis data related to the subcontracting work.
4. Output rate calculation guide for excavation plant provided by the plant manufacturers.
5. Data provided within published literature.

<table>
<thead>
<tr>
<th>Activity name</th>
<th>Per cent of the total cost (approximate value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame and Cladding, Roof</td>
<td>50</td>
</tr>
<tr>
<td>Service</td>
<td>30</td>
</tr>
</tbody>
</table>

The construction activities

For the selection of activities which were to be included in the model, two principal criteria were employed. Firstly the effect of the activity on the overall cost and secondly the effect of the activity on the overall duration of the project.

From a cost perspective, it was decided to include the items which cover 80% of the costs for reinforced concrete multi-storey office buildings. When the cost analysis published by the Building Magazine (Oct 1984, Oct 1985) was combined with the interviews and the research undertaken about cost analysis of sub-contracting by one of the contractors, the following items were identified as summing up approximately 80% of the total cost for reinforced concrete multi-storey office buildings (see Table 1).

The literature review [5] and interviews showed that the following should be included in the activity list when duration criteria are considered:

1. Site establishment and clearance.
2. Foundations.
3. Finishes.

Activities (1) and (2) (site establishment and foundations) are the first activities undertaken on a construction site, and impose physical constraints on scheduling. The "finishes" were stated during the interviews to be the most critical activities for the completion of the project on time.

Model structure

The structure of the simulation model can be divided into three sections. These are the time/cost model, the data files and the bar chart. The user inputs the required information and data into the time/cost model. The input is stored in data files. The stored data are processed by the time/cost model and are used for drawing the automated linked bar chart (see Fig. 1).

Time/cost model structure

The time/cost model was divided into two modules Module A and Module B. This was because two different procedures of duration and cost calculations were employed and activities with the same calculation procedures were grouped into the same module.

In practice duration may be derived by calculation by quotation from a specialist or by assessment on past experience [6]. In the current programme both duration and cost of construction tasks and activities under Module A are calculated by using
REINFORCED CONCRETE MULTI-STORRY OFFICE BUILDINGS

Fig. 1. Information/data flow in the simulation model.

the user input data while both cost and duration of Module B activities are by quotation.

Module A
Module A includes the activities of site establishment and clearance, substructure, superstructure and building envelope. These activities have been presented as the combination of certain construction tasks (see Appendix 1). The information which is built into Module A comprises: resources required for carrying out the activities, output rates of plant and labour, formulae for cost/duration calculations and a breakdown of the project’s main activities into construction tasks.

Module B
Finishes and services are presented in Module B. Due to the detailed and specialist work involved for these two activities, the user is asked to input the total duration and cost estimate for the tasks listed in Appendix 2.

Data required for the calculation of cost and duration

For the calculation of project cost and duration the following steps were undertaken.

1. Calculation of direct cost and duration for each task and consequently for each activity under Module A
2. Calculation of direct and indirect cost and duration of the entire project by combining results from Module A and Module B.

The formulae used for the calculation of cost (A) and duration (A_d) for each task can be found within Appendix 3 and are based on Unit Rate Estimating. Unit Rate Estimating is the calculation of the activity cost based on the quantity of work and the total time available to perform the task [7]. After calculating the direct cost and duration of tasks under the main activities, the direct cost of the main activities can be calculated by adding each task’s cost under that activity. The total cost of an activity includes the indirect costs as well as the direct costs. Indirect costs are those costs which are assessed for the activity. The total project cost is calculated by adding the direct costs of all activities to the indirect costs.

For the calculation of project duration not only the duration of each task but also the lag values between them must be known.

The preceding discussion and formulae show that in order to calculate the cost and duration of both activities and the whole project, user input is needed for the information concerning the quantity of work, the unit costs of plant/labour and material, the lag values and indirect costs.

Resources required for carrying out the activities, related output rates and unit costs

Resources required for carrying out the activities are materials, labour and plant. There are more than 20 screens designed for the input of quantity of materials. These were design to suit the format of a typical Bill of Quantities (employing SMM7) for ease of use. The information could be taken from building drawings, specifications and schedule of rates. The planners interviewed stated that there were necessary to be more material types to be added to the ‘Building Envelope’ section. Thus, additional input screens are provided for the description of extra materials for cladding. Where a gang of labourers is needed for an activity to be carried out, the user inputs the number of labourers to be employed within that gang.

To minimize user input the Wessex Building Price Book was used as a source of output rates during the development of the model. However, the interviews with the companies indicated that construction firms preferred using their own rates and plant costs. Alternatively, the information could be taken from building drawings and schedules of rates. The planners interviewed stated that there were material types to be added to the ‘Building Envelope’ section. Thus, additional input screens are provided for the description of extra materials for cladding. Where a gang of labourers is needed for an activity to be carried out, the user inputs the number of labourers to be employed within that gang.

Lion [8] stated that building construction is more material and labour intensive than plant intensive. Plant costs represent a comparatively small proportion of construction costs ranging probably around 5%. Although this may be the case for overall building construction, site establishment and clearance is highly plant intensive. Thus it was important to incorporate plant utilization in the model. The range of plant available is however too diverse for full inclusion in the model (refer to British Standard 6031 Earthworks for general descriptions). Wessex Haywards Plant Guide [10] states that a typical list of plant used in building operations would include JCB 3CX, Hymac 550, Drott with 4 m\(^3\) bucket, tarmac and heavy vibration roller and concrete mixer. The plant manufacturers [CB, Wacker and Bormag were contacted and from the information provided the following were included in the model, as choices of excavation and vibration plant. Ten backhoes and crawlers with bucket sizes ranging from 0.24 m\(^3\) to 2.25 m\(^3\) and eight vibration rammers and plates with output rates ranging from 150 m\(^2\) h\(^{-1}\) to 1050 m\(^2\) h\(^{-1}\).

The formula (supplied by JCB) to calculate output rates for excavation plant is:

\[Q_o = \frac{E \times 60 \times B_r}{C} \] \hspace{1cm} (1)

where: \(E \) = efficiency factor (dimensionless); \(Q_o \) = output rate of an excavator (m\(^3\) h\(^{-1}\)); \(B_r \) = bucket capacity (m\(^3\)); \(C \) = corrected cycle time (s).

The bucket capacities of the excavation plant are provided by the manufacturers. The user can see these on the input screen while choosing the excavation plant. This allows the user to choose the machine that is most closely to requirements.
To determine the plant output rate it is necessary to determine the corrected cycle time from the basic cycle time.

Basic cycle time is the time taken for an excavation plant to load, manoeuvre, dump and return to dig. However, in working conditions the cycle time is not equal to the sum of these actions as the performance of excavation plant is affected by various factors. These are depth of the excavation, type of material to be excavated, target into which the excavated material will be unloaded, slew angle of the excavator, ground conditions, and the status of the operator. Thus, corrected cycle time is calculated by adding the compensation figures for the above factors to the basic cycle time of the particular excavator. Additional to the above factors that affect the cycle time, there may be some interruptions due to operator breaks, maintenance and job holdups. The effect of these factors are accounted for by the efficiency factor \(E \). All the factors and basic cycle time for each excavator were provided by the JCB manufacturer.

Additional to the input of resources required to be used and output rates corresponding to these resources, the unit cost of the resources are also asked to be input by the user.

The precedence relationships

The precedence relationships of activities are depend on the constraints on scheduling. Echey and colleagues [10] divides these constraints into four groups. Physical relationships among building components are trade interactions, path interferences, and code regulations.

The sequence of works are well defined in repetitive construction processes [11]. Birrell [12] emphasizes that multi-storey office building construction requires sequential waves of work especially for the shell. More specifically Kartham and Lewt [14] state that the physical relationships themselves can be used to generate much of the needed sequence logic for multi-storey office building projects. However, it should be noted that for the cases of external and internal cladding, finishes and services there can not be a particular activity that can be generalized as being the preceding task. Therefore, it is assumed that these activities can start any time preceding staircases from ground to first floor. Thus, the user has to specify the floor of the staircases that will be succeeded by the external and internal cladding, finishes and services.

The precedence relationships between activities require that before an activity can start all the activities that precede it should be partially or wholly completed. For this, four types of precedence relationships can be established between two sequential tasks. These are finish-to-start, start-to-finish, start-to-start and finish-to-finish dependencies where each can include a lag value. Bar charts reported in the literature and those used by the participating construction firms showed that start-to-start and finish-to-start precedence relationships are the most widely used sequencing. Based on the above discussion and the validation of the programme, start-to-start precedence with lag values was incorporated in the model although finish-to-start relationship can also be easily adopted.

Indirect costs

There have been different approaches to what constitute the indirect costs [14,15]. The items included within this model are the ones which are stated under the Project Overheads Schedule in Code of Estimating Practice [7].

Output and validation

Output is displayed in two forms: output screens and linked bar chart. An output screen for each activity displays the duration and direct cost calculated for each construction task included under that activity. There is also an output screen displaying total project cost and duration. The linked bar chart is produced utilizing the data on duration of activities, lag values between activities, and number of floors.

The time and cost model which utilizes the Leonardo knowledge based system and the linked bar chart which has been developed using QBasic programming language are automatically linked to each other enabling the bar chart to be called from the Leonardo system. Examing the bar chart brings the user back to the time and cost model.

The validation of the results obtained from the model was undertaken in two stages; validation of the duration values, and validation of cost values. A bill of quantities for a hypothetical six-storey reinforced concrete office block was prepared. The validation of the duration values was achieved by comparing the bar charts produced by two planners from the participating companies for the

![Fig. 2. Display of the linked bar chart.](image-url)
hypothetical building with the bar chart produced from the computer model. The model gave exactly the same duration results when the data used by the planners were input into the model. Figure 2 and Fig. 3 illustrate the first and the last screen displays for the linked bar chart drawn for the hypothetical building mentioned above. Figure 4 shows the linked bar chart drawn by one of the planners. As the estimators were not able to use their own unit cost data, hypothetical costs were employed and the validation of cost values was achieved by comparing manually calculated costs with those produced by the computer model. Good agreement was achieved.

Limitations and future developments of the simulation model

The current limitations of the simulation model can be stated as follows:

1. The simulation model is developed for multi-storey (any building with more than two floors) buildings. The time/cost model can be developed for other frame types by adding information in the 'Superstructure' section. However, a new bar chart has to be developed for the new frame type.

2. The 'uniqueness' of every construction project may require additional activities to be included. For example, the choice of only one type of foundations and roof, and the limited types of materials can be restrictive for some projects. However, modules can be developed for calculation of duration and cost of these additional activities within the model.

The benefits obtained by the model

The benefits of employing the simulation model can be stated as follows:

1. Output from the model is in an easily understandable form (linked bar chart) instead of presentation in figures.
2. The effect on duration and cost of changes in output rates, gang sizes and other input values can be rapidly observed. The effect is also automatically displayed in the linked bar chart.
3. The data input for a project can be used or updated for subsequent projects as all user input is stored into data files and called back by the model.
4. The simulation model can be used as a teaching or training aid which would help students be familiar with SMM7, bill of quantities, and the interaction between some of the procedures for planning and estimating.

Conclusion

A simulation model for the duration and cost estimation of the construction of a typical multi-storey concrete framed building has been presented. This is part of an integrated model which will evaluate sets of time vs cost solutions and obtain the optimum time corresponding to the minimum cost under the given schedule restrictions. The duration and cost of a whole project is calculated within the simulation model and a linked bar chart is automatically drawn to present the duration values.

The model produced exactly the same duration and cost results as those manually provided by the Main Contractors, when the same input values were used (i.e. output rates, unit costs, lag values, gang sizes) which establishes the reliability of the model. The model provides rapid response to changes in input values and their effect on the duration and cost of the project. Also the effect is automatically displayed in the linked bar chart. It also allows input to be stored in data files for future use on new projects.

The current model is confined to multi-storey concrete framed office buildings with particular types of foundations and roof and choices within the building envelope, but it has the potential for further development to include wider choices. In addition a future development will be to build information into Module B for calculation of duration and cost in this module. The flexibility provided by Leonardo will allow a staged development without affecting the structure of the model.

Acknowledgements

The authors would like to thank the University of Glamorgan for providing funding for a research assistantship to carry out this research and Professor P. S. Coupe for providing the facilities in his department.

References

Appendix 1. Activities under Module A

1. Site establishment and clearance:
 (a) Excavation of topsoil to be removed/preserved
 (b) Excavation to reduce levels
 (c) Excavation for basements
 (d) Excavation for trenches
 (e) Compaction of bottom of excavations
2. Substructure: (reinforced) concrete foundations
 (a) Formwork erection
 (b) Reinforcement construction
 (c) Plain/reinforced concrete placement
3. Superstructure
 (a) Formwork erection
 (b) Reinforcement construction
 (c) Plain/reinforced concrete placement
4. Building envelope:
 (a) Brickwork and blockwork construction
 (b) Roofing, reinforced concrete roof structure
 (i) Formwork erection
 (ii) Reinforcement construction
 (iii) Plain/reinforced concrete placement
 (iv) Roof asphaltating
Appendix 2. Activities under Module B

1 Finishes:
 (a) Internal finishes
 (i) Wall finishes
 (ii) Floor finishes
 (iii) Ceiling finishes.
 (b) External finishes.

2 Services:
 (a) Lifts
 (b) Mechanical services
 (c) Electrical services.

Appendix 3. Formulae used for cost and duration calculations

\[
A_c = \frac{Q_w}{O_u} \quad A_s = \frac{Q_w}{Q_m} \\
A_d = U_i A_s N + Q_w U_m
\]

Where:
- \(A_d\) = Duration of a construction task.
- \(A_s\) = Direct cost of a construction task.
- \(A_c\) = Quantity of work (q).
- \(O_u\) = Output rate of particular equipment (labour per hour).
- \(U_i\) = Units required.
- \(U_m\) = Labour/plant unit cost (£ per h).
- \(N\) = Number of labourers employed.
- \(U_m\) = Material unit cost (£ per q).
- \(Q_m\) = Units required.
28 September 1995

Messrs Caprai, Bouclaghorn & Wild
University of Glamorgan
Dept of Civil Engineering & Building
Treforest
Pontypridd
Mid Glamorgan
CF37 1DL

Our Ref: CHG/1184/KJ

Dear Sirs

I was very interested in your article in Building Research and Information regarding a simulation model for time/cost calculations.

The RCC has been involved with trying to optimise different forms of concrete construction for the buildings in our Cost Model Study. We have designed different forms of construction eg:
- Ribbed slabs
- Flat slabs using traditional loose bar with traditional links
- Flat slabs using one-way mats and proprietary shear systems.

We have designed these at different thicknesses and have estimated material cost differences. We have looked at theoretical changes to the engineers fees due to degree of difficulty.

However, we have had great difficulty in estimating critical construction time differences for the different forms of construction. Are you in a position to help?

We are part-way through a DoE: PRIT project looking at rationalisation of reinforcement in the slabs in the run up to the construction of the in-situ concrete frame test facility at BRF, Cardington early next year. Perhaps there would be areas of mutual benefit and I would look forward to hearing from you.

Yours sincerely

Charles Goodchild

Encl. Cost Model Study
APPENDIX 2 INTERVIEWS WITH THE CONSTRUCTION PLANNERS, ESTIMATORS AND RESEARCHERS
Introduction

During the development of the integrated model, various interviews have been undertaken by construction practitioners (planners, estimators and teaching company associates) from the companies Wimpey and Kyle Stewart Construction.

The interviews have been in structured form and undertaken during different stages of the model. In general the aim of the interviews have been;

(1) to get information/data that could be used for the development of the model,

(2) to get the opinions of the practitioners related to the model and its potential application areas,

(3) to validate the results from the model.
Interview No. 1

At: Wimpey Construction, Bristol

Date: 28/2/94

Aim: To get to know the company and introduce the aim of the project.

The first interview with the collaborating establishment was in the form of getting to know each other. Firstly, the aim of the project was explained to the two planners and an estimator from Wimpey and then the practitioners gave, in general terms, some information about the firm and their job content.

Interview No. 2

At: Wimpey Construction, Bristol.

Date: 10/5/94

Aim: To acquire information about estimating and planning procedures and to obtain the opinion of the planner about the computer model for some more improvements on the model.

First some general questions were put to the planner about the estimating and planning processes and their interaction. After a discussion of these questions, the computer model was presented to the planner, and some additional questions were asked about the model.
Section 1: General Estimating and Programming Questions.

Q(1.1): How do you (or Wimpey Construction Estimating and Planning) define the stages of a construction project?

(a) Pre-tender - Tender - Pre-contract - Contract

(b) Pre-contract - Contract - Post-contract

A(1.1): (a) The definition of stages at (a) was employed by Wimpey. The planner defined the pre-tender stage as the stage where the client listed the contractors that could go for the tender from a starting list of many contractors.

To be selected to the tender list, the contractor has to answer a set of questions of the client in a report. The questions are mainly about:

- information about previous jobs,
- qualifications of staff,
- Health & Safety policies,
- Company structure,
- Quality assurance,
- Organisation charts
The planner complained that every client gave different questions to be answered and this took a lot of time and money. He wished that all of the clients asked the same questions.

The planner then added that after giving the report to the client, some of the clients required an interview with the project team (planner, estimator and project manager) to get a feeling for the company. However, it was stated by the planner that the decisions taken after these interviews were very subjective, and they involved no scientific way of choosing the contractor.

It was stated by the planner that the progress reports during the contract stage were given to the client on a monthly basis, and to the project manager on a weekly basis. (by the site office)

Q(1.2): How much of the information used in the estimating process is required in the planning process during the tender stage (traditional procurement)?

A(1.2): The planner answered this question by saying "nearly a 100 percent". Then he added that the Bill of Quantities was used by both departments, however while the estimators priced every item in a bill, the planners summarised the items under main headings and then used this information to produce a programme.
He also stated that both departments worked very closely together, and to give an example, they worked together in deciding the gang sizes and indirect costs.

Q(1.3): What are the main characteristics that affect the degree of accuracy of an estimate and a plan?

- Type/sophistication of project.
 (Industrial/Commercial)
- Time to complete tender.
- In house resources available.
- Importance given by company to that particular project/tender.
- Number of packages to be sub-contracted/estimated.
- Amount of work to be completed/estimated by Main Contractor's operatives.
- Accuracy of sub contractor's estimate.
- Fluctuations in cost, clients variations.

A(1.3): The planner stated that they never checked the accuracy of an estimate when a project was completed. The accuracy of an estimate was checked only if they lost a lot of money on the job. He also added that they did not have any allowable margin for the accuracy of an estimate, but it should be very accurate especially in time of recession.
He also added that the estimator's work for a particular project finished after the tender stage and QSs on site took the responsibility of checking the costs.

However, he still made comments on the following points which might affect the accuracy of an estimate.

(1) If time to complete tender is short the accuracy is affected negatively.

(2) More people working on the estimate, estimate is more accurate.

(3) More importance given to the tender, more accurate is the estimate.

At this point, he stated that the biggest overhead cost in a construction firm was the tendering team (planning, estimating), and the tendering team was paid from the profit on site. On the other hand the site staff are counted within the cost of the site.

He also added that in the current year they had a tender success ratio of 1 in 6.
Fluctuations in cost affect the estimated price. On some jobs (ex: a hospital job they waited to built for 2 years) where there are a lot of clients' variations, the estimate is affected by these variations.

The sub-contractors' estimates affect the tender price, and the planner stated that there might be up to 40-50% difference between the estimates of different sub-contractors.

He also stated that if a sub-contractor was busy, the estimate from that sub-contractor was usually high.

The planner stated that Wimpey subcontracts all work, and also stated that his company prices the main activities of groundwork, brickwork, joints, carpentry, concrete, formwork, reinforcement to check the estimates from the subcontractors.

Most companies preferred front end loading, as the cost of the project at the beginning was high due to the high cost of site set up and foundations.

If back end loading was preferred then the company had to borrow money from a bank and this affected the estimated cost.
He said that if there was front end loading, or back end loading for the project it was stated in the bill of quantities (in the preliminaries). Thus the estimate was done according to that.

Q(1.4): What type of structure, steel or concrete, is more commonly found in office building projects?

A(1.4): The planner stated that one could not generalise that concrete or steel was more common. It all depended on the job. Concrete provided the flexibility where steel provided speed. However, he also pointed out that steel structures were more preferred within the UK construction industry.

Section 2: Questions Relating to the Computer Model.

Q(2.1): Can the Pareto distribution (20/80 : i.e.; 20 % of work accounts for 80% of cost) be applied to the activities included within the programme for a Commercial project? If not, what is the percentage of those activities included for the development of an office building.

A(2.1): The planner gave the following percentages of cost.

10 % Foundations 50 % RC Frame, Roof, External cladding

10 % Finishes 30 % Mechanical
Thus, the activities included within the Simulation Model account for nearly 60% of the cost of the work.

Q(2.2): Can you say that the activities used within the computer model are the critical activities for office building development?

A(2.2): The planner stated that the activities were the critical ones but there needed to be finishes at the end. He also said that in some projects finishes affected the duration more than for others.

Q(2.3): Do you believe the currently completed part of the programme has any use in industry?

(a) Yes, why?

(b) No, why not?

A(2.3): The planner answered this question by a "Yes". He then pointed out that although the computer model was restricted to certain activities, it was a good guideline and it could be used as a training tool within the planning and estimating departments.
Q(2.4): Do you believe that the programme would help students to understand the following processes more easily:-

(a) the use and format of bills of quantities (SMM7),

(b) the estimating and planning processes,

(c) the interdependence and interaction of the estimating and planning processes and disciplines?

A(2.4): The planner thought, the computer model would be a very useful tool to teach the above points to students. He also added that most students leave university without seeing any bill of quantities.

He also stated that estimating and planning departments worked very closely with each other and it was very important for the students to learn that.

Q(2.5): Is the information asked for during the execution of the programme available during the tender stage?

A(2.5): "Yes". Then the planner added that the procedure employed in the programme was the same procedure employed by the planning and estimating departments during the tender stage.
Q(2.6): Do you (Wimpey) take into account the loss in productivity due to the increase in the number of operatives/labour?

A(2.6): The planner stated that they did take productivity loss into account due to an increase in the number of operatives, however there was no scientific formula used for it. He said that a good estimate was needed for it. He also pointed out that there were a lot of variables that had an effect on the productivity like the effect of weather, complexity of the job, age of the operative, overtime work.

(a) Is productivity affected by shift work?

The planner answered "yes", as they had to work under none natural lightning.

(b) Is productivity affected by over time?

The planner answered "yes" as they get tired.
Section 3: Usage of Programme.

Q(3.1): What part of the programme can be improved to make it more user friendly?

A(3.1): The planner stated that the programme would be more user friendly if it was possible to see the quantities of work and the output rates together and also by being able to print them.

Section 4: Any Other Comments.

(1) The planner stressed the point that planning could not be standardised as every project was unique and there were so many different work combinations for a project.

(2) The planner stated that Wessex and Spons were very generous with their output rates and unit prices, but they provided good guidelines.
Interview No. 3:

At: Kyle Stewart, London

Date: 21/6/94

Aim: Getting information about the contribution of different sub-contracting packages on project cost.

The researchers (Teaching Company Associates) provided some data about the percentage (%) of main sub-contracting packages in a contract price. The findings were achieved through a teaching company programme with Loughborough University of Technology. The following table presents their findings.

<table>
<thead>
<tr>
<th>SUBCONTRACT PACKAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage (%) of Total Contract Price (Traditional & Design and Construct):</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Electrical</td>
</tr>
<tr>
<td>Cladding</td>
</tr>
<tr>
<td>Mechanical</td>
</tr>
<tr>
<td>Frame</td>
</tr>
<tr>
<td>Ground Works</td>
</tr>
</tbody>
</table>
Interview No. 4 :

At : Wimpey Construction, Bristol

Date : 4/7/94

Aim: Validation of the Results Obtained by Running the Computer Model

The aim of this interview was to create a hypothetical reinforced concrete office building, prepare the bill of quantities for it and finally calculate the duration and cost of construction.

Before the interview a bill (of quantities) was prepared which included the item names that have been built into the simulation model.

During the interview, the planner drew the plan, the elevation and some sections which belonged to a hypothetical concrete framed office building. (See Appendix 5 for the drawings)

The reason for using a hypothetical building was to cover items identical to those in the computer model so that all parts would be validated. Also the planner was not able to authorise the loan of any bills of quantities held by the company.
During the preparation of the bill of quantities, the planner suggested leaving out some items and adding others to make the model more suitable for reinforced concrete office blocks. These were:

(1) Take out the "stainless steel for reinforcement" as stainless steel was not used in office buildings for reinforcement.

(2) Add brickwork and blockwork for external walls, in addition to internal walls.

(3) Add asphalt for roofing.

The planner calculated the duration for carrying out each activity by using their own output rates and gang sizes.

It was agreed that the next step would be to input the values into the computer model and compare the final duration values with the values obtained by the planner. Then in the next interview, the differences between the results could be discussed and also a bar chart could be drawn.

It should be noted here that the same bill of quantities for the hypothetical building was given to the planner in Kyle Stewart and a bar chart was drawn by that planner, too.
Interview No. 5:

At: Wimpey Construction, Bristol

Date: 25/7/94

Aim: The Validation of the Results, Obtained by Running the Computer Model

The aim of this interview was to continue working on the calculations of duration of activities of the hypothetical building which was designed in the previous interview.

The planner had finished the duration calculations and drew a bar chart for these by using PowerProject programming software. The planner and the researcher discussed the following matters relating to the bar chart.

The Main Differences Between the Planner's Bar Chart and the Bar Chart Drawn by the Computer Model.

(1) The planner put the brickwork headings after all the concrete work was finished. The researcher stated that in her programme the bar chart showed the brickwork after each floor. The planner stated that this was not an important difference but it is usually preferred by the planners to "keep like items together in a programme". He also stated that generally brickwork started after at least 3 floors of concrete work had been finished.
The researcher also realised that the planner put the RC to stairs on the same line for all floors, not after each floor as the researcher did in her programme. The planner also said it would not matter if you put all the RC for stairs together or in each floor separately as RC for stairs was not critical and could finish any time before the end of the project.

The planner stated that there was usually 3 weeks lead between the start times of concrete work (to columns) to two floors.

The planner stated that although the duration of concrete work was the same for all of the floors on the bar chart, it was better to employ a learning curve for the labour in a job like this (repetitive construction).

Time and Cost Relationship:

The planner stated that the most important item in terms of time and cost relationship was formwork because if the completion time of the project was extended the formwork could be used over and over again which would decrease the cost of formwork and eventually the direct cost of the project.
(2) Direct cost calculations: The planner stated that it was a good decision in the computer model to ask the unit cost/price of the resources from the user, as the unit cost/price would fluctuate from time to time and place to place and would depend on the availability of the resources.

(3) Indirect cost calculations: The planner stated that after the calculation of the duration of the project the cost preliminaries would be calculated accordingly. He stated the following main headings would be employed for most of the jobs.

(a) Cost of supervision.
(b) Hutting on site.
(c) Erect and dismantle the huts.
(d) Compound areas for huts to stand on.
(e) Security.
(f) Hoarding and temporary fencing.
(g) Notice board.
(h) Telephone instalment and rental.
(i) Office furniture and equipment.
(j) Plant used (Plant schedule).
(k) Erect and dismantle plant
(l) Scaffolding
(m) Transport of offices/plant
(n) Sundries:
(n1) Samples
(n2) Testing
(n3) Protection
(n4) Survey Equipment
(n5) Printing drawings
(o) Cleaning the building.
(p) Drying out the building.
(q) Attendance on nominated sub-contractor.
(r) Temporary facilities:
 (r1) Water
 (r2) Electricity
 (r3) Drainage
 (r4) Access road
(s) Temporary works.

He finally stated that the preliminaries usually add up to about 8-15% of the direct cost for the project.

The Relationships Between the Activities:

The planner stated that at the tender stage the start relationship between the activities were more important for the project duration calculations.
Interviews No 6 & 7:

Dates: 13/1/95, 20/1/95

Aim: To learn about the estimating procedure from the estimators.

The following are a combination of the answers from both of the estimators.

Q(1): What does the estimating procedure include?

A(1): It includes mainly the unit pricing of the contract bills. This consists of all the preparation required before pricing, drawing up and sending out of enquiries for various materials or works within the bill of quantities. The person responsible for the enquiries should be familiar with the sources of supply for materials and with the sub-contractors available in the area where the project is to be undertaken. This is usually undertaken by the co-operative work of the estimating and the buying departments.

Q(2): What are the main elements included in the unit rate estimating?

A(2): These are mainly labour and materials and additionally plant.
Q(3): What do you consider as the unit labour cost for the labour working in a gang with different skill levels?

A(3): Firstly, the weekly cost, i.e. wage, of a labourer is calculated by multiplying the hourly rate by the total number of hours expected to be worked each week. The hourly rate includes the basic hourly pay plus minimum bonus, plus additions to the basic hourly rate paid as attraction, travelling time, expenses and subsistence allowances, employers' and public liability insurance, tool money, sickness benefit payments and holidays with pay scheme. Additionally national insurance and pensions; and guaranteed week allowances which are expressed as a percent of the net wages paid.

The net hourly labour cost is calculated by dividing the total weekly cost by the actual hours to be worked. The gang rates are then calculated by considering the proportion of skilled, unskilled and semi-skilled labour that work together in a gang.

Q(4): How do you consider the material unit costs?

(A4): These are requested from the suppliers or manufacturers by quotation. In this way, it is ensured that the unit rates are up to the current market rate. The unit rates should include mainly the basic price, less discounts other than those for cash,
allowances for waste, unloading, stocking, getting in, and
distributing around site. Including all these factors provides a
more accurate material cost.

Q(4): How do you consider the plant costs?

A(4): It depends on the use of the plant. If a particular plant
is required for a particular task, the cost of it is calculated
by the unit rate estimating method. However, the type of
equipment and plant which has various uses (e.g. a tower crane)
or is used by different trades is included under 'preliminaries'
as a bulk cost.

Q(5): What are the advantages of using unit rates representing
costs only, i.e. not including overheads and profit.

A(5): Using unit rates representing costs only has two main
advantages:

(1) If a percentage is added to each unit rate, rounding-up the
figures may be required (to the nearest 1p or 0.5p). This may add
a considerable amount to the total estimate for some very large
projects and may result in loosing the job because of too high a
tender price.
(2) If an overhead or profit element is added after all the unit rates are completed, it will not be easy to make adjustments to all the items.

Q(6): Do you use any computer packages for estimating?

A(6): Yes. Mainly as an aid to cut out the repetitive calculations for similar or common items. However, these are only an aid during the estimating procedures as 'estimating is an art not a science' and some procedures cannot be formulated.

Q(7): Do you work closely with the planners?

A(7): Sometimes. The contract duration is used while calculating the cost of time based items under preliminaries, i.e. the indirect costs. Thus, calculation of a realistic duration is very important for a realistic estimate. If the estimated contract duration is too short, the time based items will be undervalued and it may cause a loss for the contract. If it is too long, it may mean a loss of competitiveness due to too high a cost for the time based items.

Q(8): How do you account for the productivity loss which results from an increase in the amount of labour in a gang to accelerate work?
A(8): (Wimpey) We use 3 labourers as the maximum number of labourers to be a 100% productive in a gang. However, this number may be different for other estimators in other companies.
Interview 8 :
At: Wimpey Construction, Bristol
Date: 20/1/95
Aim: To obtain the opinions of the planners on optimisation applications.

(Q1) Do you always plan for a given project duration?

(A1) "Not always. For 75% of projects the client gives a project duration which is required. At the same time, the client normally asks about the benefits of working to a duration given by the company. Experienced clients (like Sainsburys asking for the construction of a superstore) usually know how long it takes to finish a project. This duration normally only changes with different ground conditions."

(Q2) Do you employ any optimisation technique during pre-tender/pre-contract stages?

(A2) "No. But we use 'what if' situations for the use of resources and choose the resources that would satisfy the requirements of the client. We usually know what resources are available on the market. To give an example, if there are two to three big reinforced concrete frame building construction projects in progress at one time in Bristol, they would roughly know the number of men available in Bristol to carry out a new
reinforced concrete frame building. If the resources are not available in that particular area, they look further afield to other areas. Depending on the availability of resources the market rates may change accordingly. Thus they try to achieve tender values as 'optimum' as possible for the conditions of that particular project. This is one form of optimisation which they employ during pre-tender and pre-contract stages which is somewhat empirical."

(Q3) To be able to finish a project in a shorter duration than calculated or required, would you employ more resources (plant and labour) or overtime work?

If you employ more resources, do you make allowances for the productivity loss due to overcrowding and congestion?

If you employ overtime work, how do you account for the cost increase?

(A3) Although at times more resources are employed to accelerate the work it should be noted that the duration does not decrease in direct proportion to the resource increase. For example if it takes 4 men to build a roof in 6 weeks, on doubling the work force to eight men it will take longer than 3 weeks to construct the roof. This is because efficiency decreases with the larger numbers of workers due to increased congestion. There is no
formula or scientific procedure which can be used to predict the exact outcome and it is left to quotations by the subcontractors to determine the cost.

In cases where the duration required by the client for the completion of the project is too short, the contractor would suggest that it would be cheaper to build over a longer period. However the client has to take cash flow and the funding situation into consideration for a longer duration.

(Q4) Are there any cases where the total indirect cost of a project is greater than total direct cost?

(A4) No. Not even in very specialised work like the second Severn Crossing. Even in that project the indirect costs would be about 20% of the direct costs. Usually it is 10-12%.

(Q5) Do you take resource limitations into account during pre-tender and pre-contract planning?

(A5) No. If the company says it cannot provide the resources, it will not get the job. It is always assumed there are resources available. The availability of resources is all a matter of supply and demand. In some cases getting the resources is not only achieved by paying the market rate but also including
additional attractions such as bonus payments or paying at greater than the market rate.

(Q6) Can we say that total indirect cost is equal to 0 when the construction of the project has just started (i.e. project duration is 0)?

(A6) Yes, that can be assumed for traditional procurement.

(Q7) What is your opinion of optimisation applications?

(A7) At tender when you put the tender price, the cost of the project is only an estimate. Only during and after the construction of the building do you discover whether the values were optimum or not. If the project falls behind schedule and profit falls it shows that your tender estimates of time and cost were not the optimum.
Interviews No 9 & 10 :

Dates: 10/10/95, 17/10/95

Aim: The Opinions of the Planners on the Model

After the completion and the validation of the model, the opinions of the three planners (two from Wimpey and one from KS) were sought to give their assessment of the model. Their opinions can be summarised as follows:

(1) In its current form, the model could be used for training within large construction firms and also for estimating and planning by medium sized contractors. Additionally, competition within the construction industry requires firms to tender for as many contracts as is possible. Thus, this model could be used to help less experienced planners and estimators to prepare some of the many tenders.

(2) Any future development of the model should include steel frame structures as steel frames are currently more widely used in the UK.

(3) While deciding on purchasing such a model construction firms would give greatest emphasis to two criteria. These are, the accuracy of the results, and the purchasing/operating cost benefit ratio.
(4) The use of only physical constraints on the lag values are found to be sufficient for repetitive work.

(5) The detail of the model is ideal for the pre-tender and pre-contract planning stages.

(6) The detail in the output presentation is sufficient enough for different management levels. However, it would be an advantage to display the costs of labour, material and plant separately.

(7) It was stated that although accelerating the project is not usually considered during the tendering procedure, there have been cases where optimisation has been applied as an approach in extending the planned project duration to meet the requirements of the client.

(8) It was stated that the linked bar chart is currently the only programming technique that is used by the practitioners. Although the linked bar chart drawn by the model is stated to be sufficient for the current development, it would require modification if additional new activities were to be included within the model. It was also stated that clients sometimes ask for programmes and related information to be provided a floppy disk and thus they prefer the tender programme to be produced using the
computer software that is available to them. Thus, the model would be accepted by the industry if it could also interact with the currently employed bar chart drawing computer programmes.

(9) It was stated that neither of the firms utilise any computer model which combines both cost and duration estimation. However, use of such a programme would help to change the structure of the industry by enabling the estimators and planners to work closely together.

(10) For the effects of uncertainty on cost and duration estimates and intuition are used more than quantitative methods. However, these are taken into account within the output rates. Use of probabilistic models based on techniques like Monte Carlo Simulation are too sophisticated to be accepted by the industry.

(11) It would be an advantage for the model to provide cash flow curves as the use of S curves has been increasing in the industry especially after the introduction of the Private Finance Initiative.

(12) While assuming a linear relationship between activity cost and duration, the gang sizes are assumed to be increasing one man at a time. However, for some trades (like steel
fixers, brickmen and carpenters) the gang sizes would not be increased by one man only as they work in groups of two or more. Thus, an incremental increase in gang sizes would be more realistic.

(13) It was stated by one of the planners that the time taken for reinforced concrete to achieve its required strengths affects the duration and cost of the project due to the different curing times needed. The model could be used to compare the effect on project duration and cost of different curing times and strengths of the reinforced concrete.

(14) One of the planners insisted that the future development of the model should consider the development of the 'Superstructure' (reinforced concrete) section in more detail which would provide a 'Reinforced Concrete Frame Detailed Contract Programme'. He stated that this would mean considering additional aspect to the model like concreting of the floor slabs by dividing them into sections. The possibility of checking the appropriateness of the model for such a development was then suggested. This could be achieved by comparing the input-process-output of the model (i.e. 'superstructure' section) with some real project data. Thus, the planner made arrangements to obtain some real data from a recently completed reinforced concrete multi-
storey office building project. A new interview date was arranged to get the information from the planner.
Interview No 11:

At: Wimpey Construction, Bristol.

Dates: 8/11/95

Aim: Assessment of Information Obtained From a 'Reinforced Concrete Frame Detailed Contract Programme' and Related Data.

During this interview the planner provided a detailed programme for the reinforced concrete frame of a multi-storey office development and related data for the assessment of future developments of the integrated computer model.

The project was a multi-storey (6 floors) reinforced concrete office buildings. The storeys of the building had little differences in their architectural and structural plans. Thus the detailed contract programme showed the same duration for formwork/reinforcement/concrete for every floor. This approach was exactly the same in the Simulation Model where small variances of the floors were ignored and duration values for each floor were calculated as an average. However, as the programme was a contract programme, casting, curing and striking of concrete were presented in much more detail than in the Simulation Model developed by the author.

In addition to the contract programme, a priced bill of quantities for the concrete frame was provided. However, this only included the labour unit costs in £/hr values not in £/unit.
of quantity values. This approach is totally different from the unit cost estimating approach undertaken within the model. Thus, it was not possible to use these unit costs within the model.
APPENDIX 3 OUTPUT RATE CALCULATION GUIDE FROM MANUFACTURERS JCB AND WACKER
Output Performance

The basic cycle time - BCT, is made up of various operational timings as the following tables show.

LOADER

<table>
<thead>
<tr>
<th>Action</th>
<th>3CX</th>
<th>2CX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raise to full height from ground level</td>
<td>3.3</td>
<td>6.0 secs</td>
</tr>
<tr>
<td>Lower from full height to ground level</td>
<td>2.2</td>
<td>4.1 secs</td>
</tr>
<tr>
<td>Dump at full height</td>
<td>1.6</td>
<td>1.8 secs</td>
</tr>
<tr>
<td>Crowd at full height</td>
<td>1.3</td>
<td>2.2 secs</td>
</tr>
</tbody>
</table>

EXCAVATOR

<table>
<thead>
<tr>
<th>Action</th>
<th>2CX</th>
<th>3CX</th>
<th>3D</th>
<th>4CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boom raise to full height from ground level</td>
<td>4.0</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4 secs</td>
</tr>
<tr>
<td>Boom lower from full height to ground level</td>
<td>3.2</td>
<td>2.7</td>
<td>2.7</td>
<td>2.8 secs</td>
</tr>
<tr>
<td>Dipper in</td>
<td>3.1</td>
<td>3.4</td>
<td>3.6</td>
<td>3.8 secs</td>
</tr>
<tr>
<td>Dipper out</td>
<td>2.5</td>
<td>2.2</td>
<td>2.5</td>
<td>2.8 secs</td>
</tr>
<tr>
<td>Bucket crowd (speed position)</td>
<td>3.2</td>
<td>2.7</td>
<td>2.1</td>
<td>2.2 secs</td>
</tr>
<tr>
<td>Bucket dump (speed position)</td>
<td>2.5</td>
<td>1.7</td>
<td>1.7</td>
<td>1.8 secs</td>
</tr>
<tr>
<td>Slew 180° (left and right)</td>
<td>3.8</td>
<td>4.0</td>
<td>4.3</td>
<td>4.4 secs</td>
</tr>
<tr>
<td>Stabiliser in</td>
<td>5.5</td>
<td>2.8</td>
<td>2.8</td>
<td>5.0 secs</td>
</tr>
<tr>
<td>Stabiliser out</td>
<td>4.0</td>
<td>2.6</td>
<td>2.6</td>
<td>5.5 secs</td>
</tr>
</tbody>
</table>
For calculation purposes BCT is as follows:-

\[3C = 8 \text{ secs}, \quad 3CX = 8 \text{ secs}, \quad 3D = 8 \text{ secs}, \]
\[4CT = 9 \text{ secs}, \quad 2CX = 10.5 \text{ secs}. \]

Output performance is governed by many variable factors and at best can only be estimated to give a guide.

EXCAVATING

To calculate output per hour four main factors affect the performance, dig depth, material, target, and slew angle. One other factor can alter the output and that is the operator, but for these calculations this is taken to be of average status.

Compensation figures to be added to BCT to give corrected cycle time

<table>
<thead>
<tr>
<th>Dig Depth</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1 m</td>
<td>1</td>
</tr>
<tr>
<td>1-2 m</td>
<td>2</td>
</tr>
<tr>
<td>2-3 m</td>
<td>4</td>
</tr>
<tr>
<td>3-4 m</td>
<td>6</td>
</tr>
<tr>
<td>4-5 m</td>
<td>8</td>
</tr>
<tr>
<td>5-6 m</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Target Type</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Dump</td>
<td>0</td>
</tr>
<tr>
<td>Small Target</td>
<td>5</td>
</tr>
<tr>
<td>Target with obstruction</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slew Angle</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°-30°</td>
<td>0</td>
</tr>
<tr>
<td>30°-60°</td>
<td>1</td>
</tr>
<tr>
<td>60°-90°</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dig Material</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft Earth - Loose Material - Stock Pile</td>
<td>0</td>
</tr>
<tr>
<td>Medium Dig - Clay</td>
<td>2</td>
</tr>
<tr>
<td>Medium Dig - Packed Earth - Soil/25% Rock</td>
<td>4</td>
</tr>
<tr>
<td>Medium/Hard Dig - Hard Soil/50% Rock</td>
<td>10</td>
</tr>
<tr>
<td>Tough Dig - Sandstone, Shale, Limestone, Frost</td>
<td>16</td>
</tr>
</tbody>
</table>
APPENDIX 4 CONSTRAINT INEQUALITIES FOR A REINFORCED CONCRETE MULTI STOREY BUILDING
Duration Values:

Pr : Project duration under normal conditions.

X(i) : Starting point (in days) of activity (i).

dur(i) : Duration of activity (i) under normal conditions.

durm(i): Duration of activity (i) under crash conditions.

<table>
<thead>
<tr>
<th>(i)</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xp</td>
<td>End of the project</td>
</tr>
<tr>
<td>1</td>
<td>Excavate topsoil.</td>
</tr>
<tr>
<td>2</td>
<td>Excavate reduce levels.</td>
</tr>
<tr>
<td>3</td>
<td>Excavate basements.</td>
</tr>
<tr>
<td>4</td>
<td>Excavate trenches.</td>
</tr>
<tr>
<td>5</td>
<td>Compact bottoms of excavations.</td>
</tr>
<tr>
<td>6</td>
<td>Blinding concrete.</td>
</tr>
<tr>
<td>7</td>
<td>Formwork for foundations.</td>
</tr>
<tr>
<td>8</td>
<td>Reinforcement for foundations.</td>
</tr>
<tr>
<td>9</td>
<td>Concrete for foundations.</td>
</tr>
<tr>
<td>10</td>
<td>Roof asphalt.</td>
</tr>
<tr>
<td>11</td>
<td>Internal brickwork.</td>
</tr>
<tr>
<td>12</td>
<td>Internal blockwork.</td>
</tr>
<tr>
<td>13</td>
<td>External brickwork.</td>
</tr>
<tr>
<td>14</td>
<td>External blockwork.</td>
</tr>
<tr>
<td>15</td>
<td>Internal finishes.</td>
</tr>
<tr>
<td>16</td>
<td>Wall finishes.</td>
</tr>
<tr>
<td>17</td>
<td>Floor finishes.</td>
</tr>
<tr>
<td>18</td>
<td>Ceiling finishes.</td>
</tr>
<tr>
<td>19</td>
<td>External finishes.</td>
</tr>
<tr>
<td>20</td>
<td>Lift Services.</td>
</tr>
<tr>
<td>21</td>
<td>Mechanical Services.</td>
</tr>
<tr>
<td>22</td>
<td>Electrical Services.</td>
</tr>
<tr>
<td>23</td>
<td>Formwork for slab/beams.</td>
</tr>
<tr>
<td>24</td>
<td>Reinforcement for slab/beams.</td>
</tr>
<tr>
<td>25</td>
<td>Concrete for slab/beams.</td>
</tr>
<tr>
<td>26</td>
<td>Formwork for columns/walls.</td>
</tr>
<tr>
<td>27</td>
<td>Reinforcement for columns/walls.</td>
</tr>
<tr>
<td>28</td>
<td>Concrete for columns/walls.</td>
</tr>
<tr>
<td>29</td>
<td>Formwork for staircases.</td>
</tr>
<tr>
<td>30</td>
<td>Reinforcement for staircases.</td>
</tr>
<tr>
<td>31</td>
<td>Concrete for staircases</td>
</tr>
</tbody>
</table>

Table 1 : Numbers Used for the Activities While Formalising the Constraints.
Lag Values

<table>
<thead>
<tr>
<th>Lag</th>
<th>Activity Numbers:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(1) & (2)</td>
</tr>
<tr>
<td>(2)</td>
<td>(2) & (3), (2) & (4), (2) & (5)</td>
</tr>
<tr>
<td>(5)</td>
<td>(5) & (6)</td>
</tr>
<tr>
<td>(6)</td>
<td>(6) & (7)</td>
</tr>
<tr>
<td>(7)</td>
<td>(7) & (8)</td>
</tr>
<tr>
<td>(8)</td>
<td>(8) & (9)</td>
</tr>
<tr>
<td>(9)</td>
<td>(9) & (23)</td>
</tr>
<tr>
<td>(10)</td>
<td>(23) & (27)</td>
</tr>
<tr>
<td>(11)</td>
<td>(27) & (23)*</td>
</tr>
<tr>
<td>(12)</td>
<td>(23)* & (29)</td>
</tr>
<tr>
<td>(13)</td>
<td>(29)** & (11), (29)** & (12)</td>
</tr>
<tr>
<td>(14)</td>
<td>(23)** & (13), (23)** & (14)</td>
</tr>
<tr>
<td>(15)</td>
<td>(27) & (26)</td>
</tr>
<tr>
<td>(16)</td>
<td>(26) & (28)</td>
</tr>
<tr>
<td>(17)</td>
<td>(23) & (24)</td>
</tr>
<tr>
<td>(18)</td>
<td>(24) & (25)</td>
</tr>
<tr>
<td>(19)</td>
<td>(29) & (30)</td>
</tr>
<tr>
<td>(20)</td>
<td>(30) & (31)</td>
</tr>
<tr>
<td>(21)</td>
<td>(13) & (15), (14) & (15)</td>
</tr>
<tr>
<td>(22)</td>
<td>(13) & (16), (14) & (16)</td>
</tr>
<tr>
<td>(23)</td>
<td>(13) & (17), (14) & (17)</td>
</tr>
<tr>
<td>(24)</td>
<td>(13) & (18), (14) & (18)</td>
</tr>
<tr>
<td>(25)</td>
<td>(13) & (19), (14) & (19)</td>
</tr>
<tr>
<td>(26)</td>
<td>(13) & (20), (14) & (20)</td>
</tr>
<tr>
<td>(27)</td>
<td>(13) & (21), (14) & (21)</td>
</tr>
<tr>
<td>(28)</td>
<td>(13) & (22), (14) & (22)</td>
</tr>
<tr>
<td>(29)</td>
<td>(25)** & (10)</td>
</tr>
</tbody>
</table>

*1st floor

**Floor number changeable from ground floor to the roof (see the constraints below)

***Roof

<table>
<thead>
<tr>
<th>Lag</th>
<th>Activity Numbers:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 Numbers Used for the Lag Values While Formalising the Constraints.

Constraints:

\[
\text{nofloor} = \text{number of floors}
\]

\[
\text{aa} = 6\times\text{nofloor} - 5
\]

\[
\text{bb} = 2\times\text{aa}
\]
To enable the below formulations and also the coding of the programme OPT2 more clearly, it should be noted that the coefficients of the formulations have been stored in the data files by starting with the activities in the same order in Table 1 and then storing the values for formwork, reinforcement, concrete for slabs/beams and columns/walls for the remaining floors which have not been included in Table 1. The coefficients of the $T(i)$ values are then stored. Finally the coefficients of the $X(i)$ and $T(i)$ values for staircases are stored. The same order is employed in the programme OPT1 while storing the coefficients of variables within the objective function, i.e., $U(i)$ values. It should finally be noted here that the lag values are the ones input for the acceleration of the project.

'excavations and foundations'

$X(2)-X(1) + T(1) \geq \text{lag}(1)$

$T(1) \leq \text{dur}(1) - \text{durm}(1)$

$X(3)-X(2) + T(2) \geq \text{lag}(2)$

$T(2) \leq \text{dur}(2) - \text{durm}(2)$

$X(4)-X(2) + T(2) \geq \text{lag}(2)$

$X(5)-X(2) + T(2) \geq \text{lag}(2)$

$X(6)-X(5) + T(5) \geq \text{lag}(5)$

$T(5) \leq \text{dur}(5) - \text{durm}(5)$

$X(6)-X(3) + T(3) \geq \text{lag}(2)$

$T(3) \leq \text{dur}(3) - \text{durm}(3)$

$X(6)-X(4) + T(4) \geq \text{lag}(2)$
\[T(4) \leq \text{dur}(4) - \text{durm}(4) \]
\[X(7) - X(6) + T(6) \geq \text{lag}(6) \]
\[T(6) \leq \text{dur}(6) - \text{durm}(6) \]
\[X(8) - X(7) + T(7) \geq \text{lag}(7) \]
\[T(7) \leq \text{dur}(7) - \text{durm}(7) \]
\[X(9) - X(8) + T(8) \geq \text{lag}(8) \]
\[T(8) \leq \text{dur}(8) - \text{durm}(8) \]

'ground floor slabs/beams'
\[X(23) - X(9) + T(9) \geq \text{lag}(9) \]
\[T(9) \leq \text{dur}(9) - \text{durm}(9) \]
\[X(24) - X(23) + T(23) \geq \text{lag}(17) \]
\[T(23) \leq \text{dur}(23) - \text{durm}(23) \]
\[X(25) - X(24) + T(24) \geq \text{lag}(18) \]
\[T(24) \leq \text{dur}(24) - \text{durm}(24) \]

'ground to first floor columns/walls'
\[X(27) - X(23) + T(23) \geq \text{lag}(10) \]
\[X(26) - X(27) + T(27) \geq \text{lag}(15) \]
\[T(27) \leq \text{dur}(27) - \text{durm}(27) \]
\[X(28) - X(26) + T(26) \geq \text{lag}(16) \]
\[T(26) \leq \text{dur}(26) - \text{durm}(26) \]

'other floors slabs/beams & columns/walls'
\[\text{For } i = 1 \text{ to nofloor}-2 \]
\[X(6i+32) - X(6i+30) + T(6i+30) \geq \text{lag}(11) \]
\[T(6i+30) \leq \text{dur}(27) - \text{durm}(27) \]

next
For i = 1 to nofloor - 1

\[X(6(i-1)+36) - X(6(i-1)+32) + T(6(i-1)+32) \geq \text{lag}(10) \]

\[T(6(i-1)+32) \leq \text{dur}(23) - \text{durm}(23) \]

next

'roof slab'

\[X(10) - X(33+aa) + T(33+aa) \geq \text{lag}(29) \]

\[T(33+aa) \leq \text{dur}(25) - \text{durm}(25) \]

'ground to first floor staircases'

\[X(29) - X(23) + T(23) \geq \text{lag}(12) \]

\[X(30) - X(29) + T(29) \geq \text{lag}(19) \]

\[T(29) \leq \text{dur}(29) - \text{durm}(29) \]

\[X(31) - X(30) + T(30) \geq \text{lag}(20) \]

\[T(30) \leq \text{dur}(30) - \text{durm}(30) \]

'other floor staircases'

for i = 2 to number of floors - 2

\[X(63+bb+3(i-1)) - X(62+bb+3*(i-1)30) + T(62+bb+3(i-1)) \geq \text{dur}(31) \]

\[T(62+bb+3(i-1)) \leq \text{dur}(31) - \text{durm}(31) \]

'internal cladding'

\[X(11) - X(29) + T(29) \geq \text{lag}(13) \]

\[X(12) - X(29) + T(29) \geq \text{lag}(13) \]

'external cladding'

\[X(13) - X(23) + T(23) \geq \text{lag}(14) \]

\[X(14) - X(23) + T(23) \geq \text{lag}(14) \]

'finishes & services'

\[X(15) - X(13) + T(13) \geq \text{lag}(21) \]

\[T(13) \leq \text{dur}(13) - \text{durm}(13) \]
\(\text{X(15)} - \text{X(14)} + \text{T(14)} \geq \text{lag}(21) \)

\(\text{T(14)} \leq \text{durm}(14) - \text{dur}(14) \)

\(\text{X(16)} - \text{X(13)} + \text{T(13)} \geq \text{lag}(22) \)

\(\text{X(16)} - \text{X(14)} + \text{T(14)} \geq \text{lag}(22) \)

\(\text{X(17)} - \text{X(13)} + \text{T(13)} \geq \text{lag}(23) \)

\(\text{X(17)} - \text{X(14)} + \text{T(14)} \geq \text{lag}(23) \)

\(\text{X(18)} - \text{X(13)} + \text{T(13)} \geq \text{lag}(24) \)

\(\text{X(18)} - \text{X(14)} + \text{T(14)} \geq \text{lag}(24) \)

\(\text{X(19)} - \text{X(13)} + \text{T(13)} \geq \text{lag}(25) \)

\(\text{X(19)} - \text{X(14)} + \text{T(14)} \geq \text{lag}(25) \)

\(\text{X(20)} - \text{X(13)} + \text{T(13)} \geq \text{lag}(26) \)

\(\text{X(20)} - \text{X(14)} + \text{T(14)} \geq \text{lag}(26) \)

\(\text{X(21)} - \text{X(13)} + \text{T(13)} \geq \text{lag}(27) \)

\(\text{X(21)} - \text{X(14)} + \text{T(14)} \geq \text{lag}(27) \)

\(\text{X(22)} - \text{X(13)} + \text{T(13)} \geq \text{lag}(28) \)

\(\text{X(22)} - \text{X(14)} + \text{T(14)} \geq \text{lag}(28) \)

' the end of the project'

\(\text{Xp - X(10)} + \text{T(10)} \geq \text{durm}(10) \)

\(\text{T(10)} \leq \text{dur}(10) - \text{durm}(10) \)

\(\text{Xp - X(15)} + \text{T(15)} \geq \text{durm}(15) \)

\(\text{Xp - X(16)} + \text{T(16)} \geq \text{durm}(16) \)

\(\text{Xp - X(17)} + \text{T(17)} \geq \text{durm}(17) \)

\(\text{Xp - X(18)} + \text{T(18)} \geq \text{durm}(18) \)

\(\text{Xp - X(19)} + \text{T(19)} \geq \text{durm}(19) \)

\(\text{Xp - X(20)} + \text{T(20)} \geq \text{durm}(20) \)
\[X_p - X(21) + T(21) \geq \text{durm}(21) \]

\[X_p - X(22) + T(22) \geq \text{durm}(22) \]

\[X_p \leq Pr \]
APPENDIX 5 THE DRAWINGS AND THE BILL OF QUANTITIES

FOR THE HYPOTHETICAL BUILDING
ELEVATION (not to scale)
PLAN SHOWING THE COLUMNS
INTERNAL PARTITIONS (100 mm) (not to scale)
(All the floors are identical)
STAIRCASES (not to scale)
GROUND FLOOR SLAB (TYPICAL) (not to scale)

BASE (2 No.) (not to scale)
<table>
<thead>
<tr>
<th>Substructure Excavation and Earthwork.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Preparation</td>
</tr>
<tr>
<td>Note: The contractor should note</td>
</tr>
<tr>
<td>from the information contained in the</td>
</tr>
<tr>
<td>Trial Fit Lags that clay will be</td>
</tr>
<tr>
<td>encountered below the surface of the</td>
</tr>
<tr>
<td>ground during excavations.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Excavate over site to remove top soil and vegetation not to be preserved.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>average 150 mm deep</td>
</tr>
<tr>
<td></td>
<td>180 m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Excavate topsoil to be preserved</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>average 150 mm deep</td>
</tr>
<tr>
<td></td>
<td>90 m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Excavation</th>
</tr>
</thead>
<tbody>
<tr>
<td>max. depth not exceeding 0.99 m</td>
</tr>
<tr>
<td>510 m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Excavate trenches to receive foundations</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>max. depth not exceeding 0.99 m</td>
</tr>
<tr>
<td></td>
<td>135 m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concrete work</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-situ Concrete</td>
</tr>
<tr>
<td>Total volume of concrete in this Element - 385 m³</td>
</tr>
<tr>
<td>Design mix C10 mass concrete as described</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Bed as blinding layer, laid on earth, not exceeding 100 mm thick</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>9 m³</td>
</tr>
<tr>
<td>Design mix C20 mass concrete as described.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>a</td>
<td>Isolated foundation base to columns and piers (in 2 no.)</td>
</tr>
<tr>
<td></td>
<td>exceeding 300 mm thick</td>
</tr>
<tr>
<td>Design mix C35 reinforced concrete as described.</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>Bed</td>
</tr>
<tr>
<td></td>
<td>not exceeding 300 mm thick</td>
</tr>
<tr>
<td>c</td>
<td>Foundation in trench</td>
</tr>
<tr>
<td></td>
<td>exceeding 300 mm thick</td>
</tr>
<tr>
<td>Reinforcement</td>
<td></td>
</tr>
<tr>
<td>High yield steel bar reinforcement as described.</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>Bars, straight or bent, in foundations and walls</td>
</tr>
<tr>
<td></td>
<td>6 mm diameter</td>
</tr>
<tr>
<td>e</td>
<td>Ditto,</td>
</tr>
<tr>
<td></td>
<td>8 mm diameter</td>
</tr>
<tr>
<td>f</td>
<td>Ditto,</td>
</tr>
<tr>
<td></td>
<td>10 mm diameter</td>
</tr>
<tr>
<td>g</td>
<td>Ditto,</td>
</tr>
<tr>
<td></td>
<td>12 mm diameter</td>
</tr>
<tr>
<td>h</td>
<td>Ditto,</td>
</tr>
<tr>
<td></td>
<td>16 mm diameter</td>
</tr>
<tr>
<td>i</td>
<td>Ditto,</td>
</tr>
<tr>
<td></td>
<td>20 mm diameter</td>
</tr>
<tr>
<td>j</td>
<td>Ditto,</td>
</tr>
<tr>
<td></td>
<td>25 mm diameter</td>
</tr>
<tr>
<td>a</td>
<td>Fabric Reinforcement as described</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Reinforcement in beds and ground beams</td>
<td></td>
</tr>
<tr>
<td>A98 - A393 at 200 mm side and end laps</td>
<td></td>
</tr>
<tr>
<td>Formwork</td>
<td></td>
</tr>
<tr>
<td>Formwork to provide ordinary finish to non-exposed surface (Type A) as described:</td>
<td></td>
</tr>
<tr>
<td>Vertical face of foundation or edge of bed, not exceeding 250 mm high</td>
<td></td>
</tr>
</tbody>
</table>
Reinforced Concrete Structure

Columns and Walls

Concrete work

In-situ concrete

<table>
<thead>
<tr>
<th>a</th>
<th>Total in-situ concrete in this Sub Element - 90 m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Isolated column, 0.03 - 0.1 m² sectional area 90 m³</td>
</tr>
</tbody>
</table>

Reinforcement

High yield steel bar reinforcement as described.

<table>
<thead>
<tr>
<th>c</th>
<th>Bars, straight or bent, in walls</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>6 mm diameter</td>
</tr>
<tr>
<td>e</td>
<td>8 mm diameter</td>
</tr>
<tr>
<td>f</td>
<td>10 mm diameter</td>
</tr>
<tr>
<td>g</td>
<td>12 mm diameter</td>
</tr>
<tr>
<td>h</td>
<td>16 mm diameter</td>
</tr>
<tr>
<td>i</td>
<td>20 mm diameter</td>
</tr>
<tr>
<td>j</td>
<td>25 mm diameter</td>
</tr>
</tbody>
</table>

9000 kg
<table>
<thead>
<tr>
<th>Formwork</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Formwork to provide an ordinary finish to non-exposed surfaces (Type A) as described:</td>
<td></td>
</tr>
<tr>
<td>a Isolated rectangular column, 200 - 400 mm width (in 252 no.)</td>
<td>302 m²</td>
</tr>
<tr>
<td>Upper Floors and Associated Beams</td>
<td>Concrete Work</td>
</tr>
<tr>
<td>In concrete framed structure</td>
<td></td>
</tr>
<tr>
<td>Total in-situ concrete in this Sub-Element - 2160 m³</td>
<td></td>
</tr>
<tr>
<td>Design mix C35 reinforced concrete as described</td>
<td></td>
</tr>
<tr>
<td>b Suspended slab, 150-300 mm thick</td>
<td>2160 m³</td>
</tr>
<tr>
<td>Reinforcement</td>
<td>High yield steel bar reinforcement as described.</td>
</tr>
<tr>
<td>c Bars, straight or bent, in suspended slabs 6 mm diameter</td>
<td></td>
</tr>
<tr>
<td>d Ditto, 8 mm diameter</td>
<td></td>
</tr>
<tr>
<td>e Ditto, 10 mm diameter</td>
<td>172800 kg</td>
</tr>
<tr>
<td>f Ditto, 12 mm diameter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High yield steel bar reinforcement as described.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>a</td>
<td>Bars, straight or bent, in suspended slabs</td>
</tr>
<tr>
<td></td>
<td>16 mm diameter</td>
</tr>
<tr>
<td>b</td>
<td>Ditto,</td>
</tr>
<tr>
<td></td>
<td>20 mm diameter</td>
</tr>
<tr>
<td>c</td>
<td>Ditto,</td>
</tr>
<tr>
<td></td>
<td>25 mm diameter</td>
</tr>
<tr>
<td></td>
<td>Formwork</td>
</tr>
<tr>
<td></td>
<td>Formwork to provide ordinary finish to non-exposed surfaces (Type A) as described:</td>
</tr>
<tr>
<td>d</td>
<td>Soffit to suspended slab,</td>
</tr>
<tr>
<td></td>
<td>slab 200-300 mm thick, height exceeding 3.5m, (in 6 no. separate surfaces)</td>
</tr>
<tr>
<td></td>
<td>Staircases</td>
</tr>
<tr>
<td></td>
<td>Concrete Work</td>
</tr>
<tr>
<td></td>
<td>In concrete Framed structure</td>
</tr>
<tr>
<td></td>
<td>In-situ concrete</td>
</tr>
<tr>
<td></td>
<td>Total in-situ concrete in this Sub Element - 16 m³.</td>
</tr>
<tr>
<td></td>
<td>Design mix C35 reinforced concrete as described.</td>
</tr>
<tr>
<td>e</td>
<td>Steps and stairs</td>
</tr>
<tr>
<td></td>
<td>Reinforcement</td>
</tr>
<tr>
<td></td>
<td>High yield steel bar reinforcement as described.</td>
</tr>
<tr>
<td>f</td>
<td>Bars, straight or bent, in staircases and landings, 6 mm diameter</td>
</tr>
<tr>
<td></td>
<td>High yield steel bar reinforcement as described.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>a</td>
<td>Bars, straight or bent, in staircases and landings, 8 mm diameter</td>
</tr>
<tr>
<td>b</td>
<td>Ditto, 10 mm diameter</td>
</tr>
<tr>
<td>c</td>
<td>Ditto, 12 mm diameter</td>
</tr>
<tr>
<td>d</td>
<td>Ditto, 16 mm diameter</td>
</tr>
<tr>
<td>e</td>
<td>Formwork to provide an ordinary finish to non-exposed surfaces (Type A) as described:</td>
</tr>
<tr>
<td></td>
<td>Soffits of staircases, not exceeding 200 mm thick, (in 6 no. separate surfaces)</td>
</tr>
<tr>
<td>Roofing</td>
<td>Asphalt</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
</tbody>
</table>

A5-13
<table>
<thead>
<tr>
<th>Brickwork and Blockwork</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>External Walls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brickwork</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common bricks, BS 3921, PC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>£80 per 1000 in cement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mortar (1:3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Half brick wall</td>
<td>2520</td>
<td>m2</td>
<td></td>
</tr>
<tr>
<td>Blockwork</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precast concrete blocks, (BS 6073), compressive strength 7 N/mm², in gauged mortar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150 mm thick</td>
<td>2520</td>
<td>m2</td>
<td></td>
</tr>
<tr>
<td>Internal Walls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blockwork</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precast concrete blocks, (BS 6073), compressive strength 7 N/mm², in gauged mortar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 mm thick</td>
<td>1332</td>
<td>m2</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX 6 THE INPUT SCREENS FROM THE SIMULATION MODEL USED FOR THE INPUT OF QUANTITIES OF MATERIALS FOR THE HYPOTHETICAL BUILDING
INPUT VALUES WHERE REQUIRED.

<table>
<thead>
<tr>
<th>AREA (m²)</th>
<th>DEPTH (m)</th>
<th>VOLUME (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.0</td>
<td>2.0</td>
<td>180.0</td>
</tr>
<tr>
<td>90.0</td>
<td>1.0</td>
<td>90.0</td>
</tr>
</tbody>
</table>

Select the most appropriate definition of your excavated material from 1 to 5.

1. Soft earth or loose material
2. Clay
3. Medium packed earth or soil that contains 25% rock
4. Medium to hard packed earth or soil that contains 50% rock
5. Sandstone, shale, limestone, frost

Please specify the total volume (m³) of excavations for the following categories of depth (m).

<table>
<thead>
<tr>
<th>Depth Range</th>
<th>Excavate to reduce level</th>
<th>Excavate for basements</th>
<th>Excavate for trenches</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0.99</td>
<td>510.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1-1.99</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2-2.99</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3-3.99</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4-4.99</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5-5.99</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6+</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Type of material at the above depths

| Depth Range | 0 | 1 | 2 | 3 | 4 | 5 | 6+)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0.99</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1-1.99</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2-2.99</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3-3.99</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4-4.99</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5-5.99</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6+</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

(0) If there is no excavation at that category of depth.

1. Soft earth or loose material
2. Clay
3. Medium earth or soil with 25% rock
4. Medium to hard packed earth/soil with 50% rock
5. Sandstone, shale, limestone, frost
Specify a plant number (1 to 10), and the amount to be used on each activity.

<table>
<thead>
<tr>
<th>Plant</th>
<th>Amount</th>
<th>Plant</th>
<th>Amount</th>
<th>Volume of excavation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excavate topsoil</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Excavate to reduce level</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Excavate for basements</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Excavate for trenches</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

What method will be used to remove excavated material from the excavation area?

1. Excavator will dump material in an open area.
2. Excavator will dump material into a vehicle.
3. Excavator will dump material into a vehicle but there are site obstructions.

<table>
<thead>
<tr>
<th>Method</th>
<th>Plant</th>
<th>Amount</th>
<th>Volume of excavation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A6-2
PLAIN DENSE AGGREGATE CONCRETE FOUNDATIONS

Enter the total volume (m³) of plain concrete for the following items.

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>0-100</th>
<th>100-150</th>
<th>150-300</th>
<th>300+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bed as blinding layer</td>
<td>9.0</td>
<td>.0</td>
<td>.0</td>
<td>.0 m³</td>
</tr>
<tr>
<td>Fdns in trenches</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>135.0 m³</td>
</tr>
<tr>
<td>Cross sectional area (m²)</td>
<td><0.03</td>
<td>0.03-0.1</td>
<td>0.1-0.25</td>
<td>0.25+</td>
</tr>
<tr>
<td>Ground beams</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0 m³</td>
</tr>
<tr>
<td>Isolated foundation bases to columns and piers</td>
<td>1.0 m³</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REINFORCED CONCRETE FOUNDATIONS

Enter the total volume (m³) of reinforced concrete for the following items.

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>0-100</th>
<th>100-150</th>
<th>150-300</th>
<th>300+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beds</td>
<td>.0</td>
<td>.0</td>
<td>240.0</td>
<td>.0 m³</td>
</tr>
<tr>
<td>Fdns in trenches</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0 m³</td>
</tr>
<tr>
<td>Walls</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0 m³</td>
</tr>
<tr>
<td>Cross sectional area (m²)</td>
<td><0.03</td>
<td>0.03-0.1</td>
<td>0.10-0.25</td>
<td>0.25+</td>
</tr>
<tr>
<td>Ground beams</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0 m³</td>
</tr>
<tr>
<td>Isolated columns</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0 m³</td>
</tr>
<tr>
<td>Isolated foundation bases to columns and piers</td>
<td>.0 m³</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REINFORCEMENT TO CONCRETE FOUNDATIONS

Please specify weights (ton) for the following categories of reinforcement.

STEEL BARS (BS 4449) (Mild & High yield steel bars)

<table>
<thead>
<tr>
<th>Dia (mm)</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>25+</th>
<th>6</th>
<th>8</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel bars</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>10.1</td>
<td>.0</td>
<td>.0</td>
<td>.0 (ton)</td>
</tr>
</tbody>
</table>

Please specify areas (m²) for the following categories of reinforcement.

STEEL FABRIC REINFORCEMENT (BS 4483)

<table>
<thead>
<tr>
<th>Fabric Reinforcement to:</th>
<th>Ground slabs/beds</th>
<th>Walls</th>
</tr>
</thead>
<tbody>
<tr>
<td>A98 - A393 at 200mm side & end laps</td>
<td>1200.0</td>
<td>.0 m²</td>
</tr>
<tr>
<td>B196 - B1131 at 100mm side & 200mm end laps</td>
<td>.0</td>
<td>.0 m²</td>
</tr>
<tr>
<td>C283 - C785 at 100mm side & 400mm end laps</td>
<td>.0</td>
<td>.0 m²</td>
</tr>
</tbody>
</table>
Formwork to Concrete/Reinforced Concrete Foundations

Enter the total area (m²)/length (m) of formwork for the following categories.

<table>
<thead>
<tr>
<th>Height (m)</th>
<th>Vertical face of Fdns/Beds</th>
<th>Ground beams</th>
</tr>
</thead>
<tbody>
<tr>
<td>>1.00</td>
<td>.0 m²</td>
<td>.0 m</td>
</tr>
<tr>
<td><0.25</td>
<td>140.0 m</td>
<td>.0 m</td>
</tr>
<tr>
<td>0.25-0.50</td>
<td>.0 m</td>
<td>.0 m</td>
</tr>
<tr>
<td>0.50-1.00</td>
<td>.0 m</td>
<td>.0 m</td>
</tr>
</tbody>
</table>

Vertical faces of walls (one or both sides, 1 side measured) .0 m²

Enter the total height (m)/area (m²) of formwork to the sides of isolated columns for the following categories of width (mm).

<table>
<thead>
<tr>
<th>Width (mm)</th>
<th><200</th>
<th>200 - 400</th>
<th>400 - 600</th>
<th>Width (mm)</th>
<th>600+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (m)</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>Area (m²)</td>
<td>.0</td>
</tr>
</tbody>
</table>
Please enter the number of floors of the building starting after foundations until the roof.

6

FORMWORK FOR COLUMNS AND WALLS

Please input the length (m) of formwork for all isolated rectangular columns.

<table>
<thead>
<tr>
<th>Width (mm)</th>
<th>Length (m)</th>
<th>Dia. (mm)</th>
<th>Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 200</td>
<td>0</td>
<td>< 300</td>
<td>0</td>
</tr>
<tr>
<td>200-400</td>
<td>302.0</td>
<td>300-600</td>
<td>0</td>
</tr>
<tr>
<td>400-600</td>
<td>0</td>
<td>600-900</td>
<td>0</td>
</tr>
</tbody>
</table>

Please input the area (m²) of formwork for the sides of isolated circular columns.

Please input the area (m²) of formwork for vertical face walls.

One side of wall shuttered 0 m²
Both sides of wall shuttered 0 m²

REINFORCEMENT FOR COLUMNS AND WALLS

Please specify weights (ton) for the following categories of reinforcement.

STEEL BARS (BS 4449) (Mild & High yield steel bars)

<table>
<thead>
<tr>
<th>Dia (mm)</th>
<th>Columns</th>
<th>Walls</th>
<th>Straight/ bent bars</th>
<th>Links, stirrups, binders</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 8 10 12 16 20 25 6 8 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>.0 .0 .0 .0 .0 .0 9.0 .0 .0 .0 (ton)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.0</td>
<td>.0</td>
<td>.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 (ton)</td>
<td></td>
</tr>
</tbody>
</table>

REINFORCED CONCRETE TO WALLS AND COLUMNS

Please input the volume (m³) of reinforced concrete to walls.

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>Aggregate</th>
<th>C/S Area (m²)</th>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 100</td>
<td>Light</td>
<td>< 0.03</td>
<td>Light</td>
</tr>
<tr>
<td>100-150</td>
<td>Light</td>
<td>0.03-0.10</td>
<td>90.0</td>
</tr>
<tr>
<td>150-300</td>
<td>Light</td>
<td>0.10-0.25</td>
<td>.0</td>
</tr>
<tr>
<td>> 300</td>
<td>Light</td>
<td>> 0.25</td>
<td>.0</td>
</tr>
</tbody>
</table>
Formwork and Reinforced Concrete for Staircases

Please input the area (m²) of formwork for soffits of staircases not exceeding 200 mm thickness.

<table>
<thead>
<tr>
<th>Height (m)</th>
<th>Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 3.5</td>
<td>54.0</td>
</tr>
<tr>
<td>> 3.5</td>
<td>0</td>
</tr>
</tbody>
</table>

Please input the area (m²) of formwork for soffits of landings not exceeding 200 mm thickness.

Please input the volume (m³) of reinforced concrete for steps and staircases with 25 kN/mm² concrete.

<table>
<thead>
<tr>
<th>Aggregate</th>
<th>Light</th>
<th>Dense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume (m³)</td>
<td>18.0</td>
<td>0</td>
</tr>
</tbody>
</table>

Reinforcement for Staircases

Please specify weights (ton) for the following categories of reinforcement for staircases.

Steel Bars (BS 4449) (Mild & High yield steel bars)

<table>
<thead>
<tr>
<th>Dia (mm)</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>25</th>
<th>Links, stirrups, binders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight/ bent bars</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Formwork for Slabs

Please input the area (m²) of formwork to soffits of slabs.

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>Height (m)</th>
<th>Depth (mm)</th>
<th>Length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 200</td>
<td>< 3.5</td>
<td>> 3.5</td>
<td>< 250</td>
</tr>
<tr>
<td>200 -300</td>
<td>0.0</td>
<td>7200.0</td>
<td>250 -500</td>
</tr>
<tr>
<td>300 -400</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>

Please input the length (m) for the formwork to the vertical edges of slabs.

Reinforcement for Slabs and Beams

Please specify weights (ton) for the following categories of reinforcement.

Steel Bars (BS 4449) (Mild & High yield steel bars)

<table>
<thead>
<tr>
<th>Dia (mm)</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>25</th>
<th>Links, stirrups, binders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight/ bent bars</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>172.8</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Slabs</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Beams</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Reinforced Concrete for Slabs and Beams

Please input the volume (m³) of reinforced concrete for suspended slabs, isolated beams and deep beams.

Suspended Slabs

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>< 100</th>
<th>100 -150</th>
<th>150 -300</th>
<th>> 300</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.0</td>
<td>.0</td>
<td>2160.0</td>
<td>.0</td>
</tr>
</tbody>
</table>

Isolated Beams

<table>
<thead>
<tr>
<th>Cross Sectional Area (m²)</th>
<th>< 0.03</th>
<th>0.03 -0.10</th>
<th>0.10 -0.25</th>
<th>> 0.25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
</tbody>
</table>

Deep Beams

<table>
<thead>
<tr>
<th>Cross Sectional Area (m²)</th>
<th>0.03 -0.10</th>
<th>0.10 -0.25</th>
<th>> 0.25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
</tbody>
</table>
BLOCKWORK

Please input the area (m²) of the blockwork for the following. Precast concrete blocks, (BS 6073), compressive strength 7 N/mm², in gauged mortar.

<table>
<thead>
<tr>
<th>Walls and partitions</th>
<th>Skins of hollow blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid blocks</td>
<td>Hollow blocks</td>
</tr>
<tr>
<td>Thickness (mm)</td>
<td>Thickness (mm)</td>
</tr>
<tr>
<td>60 .0 .0 .0 .0 .0 .0</td>
<td>90 .0 .0 .0 .0 .0 .0</td>
</tr>
<tr>
<td>75 .0 .0 .0 .0 .0 .0</td>
<td>115 .0 .0 .0 .0 .0 .0</td>
</tr>
<tr>
<td>100 .0 .0 .0 .0 .0 .0</td>
<td>125 .0 .0 .0 .0 .0 .0</td>
</tr>
<tr>
<td>150 2520.0 .0 .0 .0 .0</td>
<td>140 .0 .0 .0 .0 .0 .0</td>
</tr>
<tr>
<td>200 .0 .0 .0 .0 .0 .0</td>
<td>190 .0 .0 .0 .0 .0 .0</td>
</tr>
<tr>
<td>215 .0 .0 .0 .0 .0 .0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Piers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid blocks</td>
</tr>
<tr>
<td>Hollow blocks</td>
</tr>
<tr>
<td>Thickness (mm)</td>
</tr>
<tr>
<td>100 .0 .0 .0 .0 .0 .0</td>
</tr>
<tr>
<td>150 .0 .0 .0 .0 .0 .0</td>
</tr>
<tr>
<td>190 .0 .0 .0 .0 .0 .0</td>
</tr>
<tr>
<td>200 .0 .0 .0 .0 .0 .0</td>
</tr>
<tr>
<td>215 .0 .0 .0 .0 .0 .0</td>
</tr>
</tbody>
</table>

BRICKWORK

Please input the area (m²) of the brickwork for the following. Facing Bricks PC £160 per 1000 in gauged mortar (1:2:9); flush pointing as the work proceeds.

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>102.5 215</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Area (m²) of:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Walls</td>
</tr>
<tr>
<td>.0 2520.0</td>
</tr>
<tr>
<td>- Skins of hollow walls</td>
</tr>
<tr>
<td>.0</td>
</tr>
</tbody>
</table>
Please input the area (m²) of the blockwork for the following.
Precast concrete blocks (BS 6073), compressive strength 7 N/mm², in gauged mortar.

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>Walls and partitions</th>
<th>Skins of hollow blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solid blocks</td>
<td>Hollow blocks</td>
</tr>
<tr>
<td>60</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>75</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>100</td>
<td>1332.0</td>
<td>.0</td>
</tr>
<tr>
<td>150</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>200</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>215</td>
<td>.0</td>
<td>.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>Piers</th>
<th>Solid blocks</th>
<th>Hollow blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>150</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>190</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>200</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>215</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
</tbody>
</table>

* Fair face and flush pointing (one side or both sides)
Please input the quantities and unit costs for Mastic Asphalt BS 988.

20 mm Two coat work rubbed with fine sand; to concrete base; flat coverings:

<table>
<thead>
<tr>
<th>Width Range</th>
<th>Quantity</th>
<th>ulc (£/hr)</th>
<th>umc (£/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>over 300 mm wide</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>not exceeding 150 mm</td>
<td>1200.0</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>150 - 300 mm wide</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
APPENDIX 7 THE INPUT SCREENS FOR THE VALUES OF GANG SIZES, OUTPUT RATES AND LAG BETWEEN TASKS ACCORDING TO THE SECOND PLANNER'S DATA AND CORRESPONDING OUTPUT SCREENS.
Backhoe/Crawler

<table>
<thead>
<tr>
<th>Backhoe/Crawler</th>
<th>Bucket Capacity m³</th>
<th>Basic Cycle time secs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 JCB 3C, 3CX, 3D</td>
<td>0.30</td>
<td>8.0</td>
</tr>
<tr>
<td>2 JCB 4CT</td>
<td>0.17</td>
<td>9.0</td>
</tr>
<tr>
<td>3 JCB 2CX</td>
<td>0.24</td>
<td>10.5</td>
</tr>
<tr>
<td>4 JCB 801</td>
<td>0.04</td>
<td>15.0</td>
</tr>
<tr>
<td>5 JCB 803</td>
<td>0.11</td>
<td>15.0</td>
</tr>
<tr>
<td>6 JS 110</td>
<td>0.45</td>
<td>14.0</td>
</tr>
<tr>
<td>7 JS 150</td>
<td>0.70</td>
<td>14.0</td>
</tr>
<tr>
<td>8 JS 240</td>
<td>1.25</td>
<td>14.0</td>
</tr>
<tr>
<td>9 JS 300</td>
<td>1.75</td>
<td>14.0</td>
</tr>
<tr>
<td>10 JS 450</td>
<td>2.25</td>
<td>14.0</td>
</tr>
</tbody>
</table>

Specify a plant number (1 to 10), and the amount to be used on each activity.

<table>
<thead>
<tr>
<th>Plant</th>
<th>Amount</th>
<th>Plant</th>
<th>Amount</th>
<th>Volume of excavation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excavate topsoil</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Excavate to reduce level</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Excavate for basements</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Excavate for trenches</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

What method will be used to remove excavated material from the excavation area?

1. Excavator will dump material in an open area.
2. Excavator will dump material into a vehicle.
3. Excavator will dump material into a vehicle but there are site obstructions.

Gang Size to be Employed

Please state the normal and maximum gang sizes that would be employed to undertake the following activities for foundations.

(If overtime work will be employed to accelerate work, input "0" as maximum gang sizes)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Normal</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formwork</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Reinforcement</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Concrete</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Blinding Layer</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Please input the output rates if required.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Output rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blinding concrete</td>
<td>4.0 hr/m³</td>
</tr>
<tr>
<td>Concrete for: isolated bases</td>
<td>.4 hr/m³</td>
</tr>
<tr>
<td>Concrete for: trenches</td>
<td>.4 hr/m³</td>
</tr>
<tr>
<td>Concrete for: ground beams</td>
<td>.0 hr/m³</td>
</tr>
<tr>
<td>Concrete for: walls</td>
<td>.0 hr/m³</td>
</tr>
<tr>
<td>Concrete for: isolated columns</td>
<td>.0 hr/m³</td>
</tr>
<tr>
<td>Reinforcement: re-bars</td>
<td>19.0 hr/ton</td>
</tr>
<tr>
<td>Reinforcement: mesh</td>
<td>.2 hr/m²</td>
</tr>
<tr>
<td>Formwork</td>
<td>.3 hr/m² (m)</td>
</tr>
</tbody>
</table>

A7-1
GANG SIZE TO BE EMPLOYED

Please state the normal and maximum gang sizes to be employed to undertake the following activities.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Normal</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORMWORK FOR:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Columns and Walls</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>- Staircases</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>- Slabs and Beams</td>
<td>6</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th>Normal</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>REINFORCEMENT FOR:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Columns and Walls</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>- Staircases</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>- Slabs and Beams</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th>Normal</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>REINFORCED CONCRETE FOR:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Columns and Walls</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>- Staircases</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>- Slabs and Beams</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Please input the required output rate values.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Output Rate (hr/m²)</th>
<th>Output Rate (hr/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORMWORK FOR:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Columns and Walls</td>
<td>1.1</td>
<td>22.0</td>
</tr>
<tr>
<td>- Staircases</td>
<td>.5</td>
<td>25.0</td>
</tr>
<tr>
<td>- Slabs and Beams</td>
<td>.5</td>
<td>20.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity</th>
<th>Output Rate (hr/m³)</th>
<th>Output Rate (hr/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REINFORCED CONCRETE FOR:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Columns and Walls</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>- Staircases</td>
<td>.6</td>
<td></td>
</tr>
<tr>
<td>- Slabs and Beams</td>
<td>.3</td>
<td></td>
</tr>
</tbody>
</table>

Please state the normal and maximum gang sizes that would be employed for external blockwork and brickwork.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Normal</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blockwork</td>
<td>8</td>
<td>14</td>
</tr>
<tr>
<td>Brickwork</td>
<td>8</td>
<td>14</td>
</tr>
</tbody>
</table>

Please input the related output rates if required.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Output Rate (hr/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brickwork</td>
<td>1.20</td>
</tr>
<tr>
<td>Blockwork</td>
<td>.80</td>
</tr>
</tbody>
</table>
Please state the normal and maximum gang sizes that would be employed for internal blockwork and brickwork.

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blockwork</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Brickwork</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Please input the related output rates if required.

<table>
<thead>
<tr>
<th>Output rate (hr/m²)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Brickwork</td>
<td>0.00</td>
</tr>
<tr>
<td>Blockwork</td>
<td>.70</td>
</tr>
</tbody>
</table>

ROOF ASPHALT

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gang Size</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>

Please input the output rate of a labour (hr/m²). .8
<table>
<thead>
<tr>
<th>Activity</th>
<th>Lag values (days) (start to start precedence)</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excavate Topsoil</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Excavate to reduce levels</td>
<td>3.0</td>
<td>Floor no 1 = Ground Floor</td>
</tr>
<tr>
<td>Excavate & Compact Foundations</td>
<td>1.0</td>
<td>Floor no 2 = 1st Floor</td>
</tr>
<tr>
<td>Blinding Foundations</td>
<td>.0</td>
<td>Floor no 3 = 2nd Floor</td>
</tr>
<tr>
<td>Formwork to Foundations</td>
<td>2.0</td>
<td>No staircases on the last floor</td>
</tr>
<tr>
<td>Reinforcement to Foundations</td>
<td>3.0</td>
<td>1st Floor Frc Staircases</td>
</tr>
<tr>
<td>Concrete to Foundations</td>
<td>5.0</td>
<td>3rd Floor Frc Slab/Beam</td>
</tr>
<tr>
<td>Blind & Frc Ground Floor Slab</td>
<td>11.0</td>
<td>3rd Floor Frc Slab/Beam</td>
</tr>
<tr>
<td>Frc Columns/Walls Ground/1st Flr</td>
<td>5.0</td>
<td>Building Envelope</td>
</tr>
<tr>
<td>Frc Staircases</td>
<td>19.0</td>
<td>Building Envelope</td>
</tr>
<tr>
<td>Frc Staircases</td>
<td></td>
<td>Building Envelope</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1st Floor Frc Staircases</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1st Floor Frc Slab/Beam</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roof Slab/Beam (concrete)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Roof Asphalt</td>
</tr>
</tbody>
</table>

Please input the lag values (days) between the following activities for reinforced concrete floors (start to start precedence).

<table>
<thead>
<tr>
<th></th>
<th>COLUMNS & WALLS</th>
<th>SLABS & BEAMS</th>
<th>STAIRCASES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reinforcement</td>
<td>4.0</td>
<td>Formwork</td>
<td>10.0</td>
</tr>
<tr>
<td>Formwork</td>
<td>8.0</td>
<td>Reinforcement</td>
<td>10.0</td>
</tr>
<tr>
<td>Concrete</td>
<td></td>
<td>Concrete</td>
<td>6.0</td>
</tr>
</tbody>
</table>
APPENDIX 8 THE INPUT SCREENS FOR THE UNIT COST VALUES AND INDIRECT COST VALUES FOR THE VALIDATION OF THE MODEL
Please update the following values of plant unit cost (puc) (£/hr).

<table>
<thead>
<tr>
<th>Bachhoe Model</th>
<th>Unit Cost (£/hr)</th>
<th>Crawler Model</th>
<th>Unit Cost (£/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JCB 3C, 3CX, 3D</td>
<td>21.0</td>
<td>JS 110</td>
<td>25.0</td>
</tr>
<tr>
<td>JCB 4CT</td>
<td>21.0</td>
<td>JS 150</td>
<td>21.0</td>
</tr>
<tr>
<td>JCB 2CX</td>
<td>21.0</td>
<td>JS 240</td>
<td>21.0</td>
</tr>
<tr>
<td>JCB 801</td>
<td>21.0</td>
<td>JS 300</td>
<td>21.0</td>
</tr>
<tr>
<td>JCB 803</td>
<td>21.0</td>
<td>JS 450</td>
<td>21.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vibration Rammer (Wacker)</th>
<th>Unit Cost (£/hr)</th>
<th>Vibration Plate (Wacker)</th>
<th>Unit Cost (£/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 45Y</td>
<td>0.0</td>
<td>DPU 2430</td>
<td>0.0</td>
</tr>
<tr>
<td>BS 60Y/62Y</td>
<td>0.0</td>
<td>BPU 2950A</td>
<td>0.0</td>
</tr>
<tr>
<td>BS 105Y</td>
<td>0.0</td>
<td>BPU 3345R</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DPU 6055</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DPU 7060RC</td>
<td>0.0</td>
</tr>
</tbody>
</table>
PLAIN DENSE AGGREGATE CONCRETE FOUNDATIONS

Please update the following values of unit labour cost (£/hr) for plain dense aggregate foundations.

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th><100</th>
<th>100-150</th>
<th>150-300</th>
<th>300+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beds</td>
<td>4.8</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>Fdns in trenches</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>4.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cross sectional area (m²)</th>
<th><0.03</th>
<th>0.03-0.1</th>
<th>0.1-0.25</th>
<th>0.25+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground beams</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
</tbody>
</table>

Isolated foundation bases to columns and piers .0

Please update the following value of material unit cost (£/m³) for both plain and reinforced concrete grade 25 N/mm².

70.1 (£/m³)

REINFORCED CONCRETE FOUNDATIONS

Please update the following values of labour unit cost (£/hr) for reinforced concrete grade 25N/mm² for foundations.

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th><100</th>
<th>100-150</th>
<th>150-300</th>
<th>300+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beds</td>
<td>.0</td>
<td>.0</td>
<td>7.1</td>
<td>.0</td>
</tr>
<tr>
<td>Fdns in trenches</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>Walls</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cross sectional area (m²)</th>
<th><0.03</th>
<th>0.03-0.1</th>
<th>0.1-0.25</th>
<th>0.25+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground beams</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
</tbody>
</table>

Isolated columns .0

Isolated foundation bases to columns and piers .0

REINFORCEMENT TO CONCRETE FOUNDATIONS

Please update the following values of material unit cost (£/kg)

<table>
<thead>
<tr>
<th>STEEL BARS (BS 4449) (Mild & High yield steel bars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dia (mm)</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Please update the average labour unit cost (£/hr) for steel bars.

6.5 (£/hr)
REINFORCEMENT TO CONCRETE FOUNDATIONS

Please update the following values of material unit cost (muc) (£/m²) & labour material cost (luc) (£/hr).

STEEL FABRIC REINFORCEMENT (BS 4483)

<table>
<thead>
<tr>
<th>Ground slabs/beds</th>
<th>muc (£/m²)</th>
<th>luc (£/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric Reinforcement to:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A98 - A393 at 200mm side & end laps</td>
<td>1.5</td>
<td>5.6</td>
</tr>
<tr>
<td>B196 - B1131 at 100mm side & 200mm end laps</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C283 - C785 at 100mm side & 400mm end laps</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wells</th>
<th>muc (£/m²)</th>
<th>luc (£/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabric Reinforcement to:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A98 - A393 at 200mm side & end laps</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B196 - B1131 at 100mm side & 200mm end laps</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C283 - C785 at 100mm side & 400mm end laps</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

FORMWORK TO CONCRETE/REINFORCED CONCRETE FOUNDATIONS

Please update the material unit cost (muc) & labour unit cost (luc) for the following formwork.

<table>
<thead>
<tr>
<th>Height (m)</th>
<th>Vertical face of Dns/Beds. muc (£/m²)</th>
<th>Vertical faces of walls muc (£/m²)</th>
<th>Ground beams. muc (£/m²)</th>
<th>Ground beams. luc (£/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>>1.00</td>
<td>0 (£/m²)</td>
<td>0 (£/m²)</td>
<td>0 (£/m²)</td>
<td>0 (£/m²)</td>
</tr>
<tr>
<td><0.25</td>
<td>7.0 (£/m)</td>
<td>0 (£/m²)</td>
<td>0 (£/m)</td>
<td>0 (£/m)</td>
</tr>
<tr>
<td>0.25-0.50</td>
<td>0 (£/m)</td>
<td>0 (£/m²)</td>
<td>0 (£/m)</td>
<td>0 (£/m)</td>
</tr>
<tr>
<td>0.50-1.00</td>
<td>0 (£/m)</td>
<td>0 (£/m²)</td>
<td>0 (£/m)</td>
<td>0 (£/m)</td>
</tr>
</tbody>
</table>

Please update the following values of material unit cost (muc) & labour unit cost (luc) for formwork to the sides of isolated columns.

<table>
<thead>
<tr>
<th>Width (mm)</th>
<th>muc (£/m²)</th>
<th>luc (£/m²)</th>
<th>muc (£/m)</th>
<th>muc (£/m²)</th>
<th>luc (£/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td><200</td>
<td>0 (£/m)</td>
<td>0 (£/m²)</td>
<td>0 (£/m)</td>
<td>0 (£/m)</td>
<td>0 (£/m²)</td>
<td>0 (£/m)</td>
<td>0 (£/m)</td>
<td>0 (£/m²)</td>
<td>0 (£/m)</td>
<td>0 (£/m²)</td>
<td>0 (£/m²)</td>
<td>0 (£/m)</td>
<td>0 (£/m²)</td>
<td>0 (£/m²)</td>
</tr>
<tr>
<td>200 - 400</td>
<td>0 (£/m)</td>
<td>0 (£/m²)</td>
<td>0 (£/m)</td>
<td>0 (£/m)</td>
<td>0 (£/m²)</td>
<td>0 (£/m)</td>
<td>0 (£/m)</td>
<td>0 (£/m²)</td>
<td>0 (£/m)</td>
<td>0 (£/m²)</td>
<td>0 (£/m²)</td>
<td>0 (£/m)</td>
<td>0 (£/m²)</td>
<td>0 (£/m²)</td>
</tr>
<tr>
<td>400 - 600</td>
<td>0 (£/m)</td>
<td>0 (£/m²)</td>
<td>0 (£/m)</td>
<td>0 (£/m)</td>
<td>0 (£/m²)</td>
<td>0 (£/m)</td>
<td>0 (£/m)</td>
<td>0 (£/m²)</td>
<td>0 (£/m)</td>
<td>0 (£/m²)</td>
<td>0 (£/m²)</td>
<td>0 (£/m)</td>
<td>0 (£/m²)</td>
<td>0 (£/m²)</td>
</tr>
<tr>
<td>600+</td>
<td>0 (£/m)</td>
<td>0 (£/m²)</td>
<td>0 (£/m)</td>
<td>0 (£/m)</td>
<td>0 (£/m²)</td>
<td>0 (£/m)</td>
<td>0 (£/m)</td>
<td>0 (£/m²)</td>
<td>0 (£/m)</td>
<td>0 (£/m²)</td>
<td>0 (£/m²)</td>
<td>0 (£/m)</td>
<td>0 (£/m²)</td>
<td>0 (£/m²)</td>
</tr>
</tbody>
</table>
FORMWORK FOR COLUMNS AND WALLS

The values for the material unit cost (muc) and the labour unit cost (luc) for the following can be updated if required.

Formwork for all isolated rectangular columns.

<table>
<thead>
<tr>
<th>Width (mm)</th>
<th>muc (£/m)</th>
<th>luc (£/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td><200</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>200 -400</td>
<td>0.1</td>
<td>12.5</td>
</tr>
<tr>
<td>400 -600</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>>600</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Formwork for the sides of isolated circular columns.

<table>
<thead>
<tr>
<th>Dia. (mm)</th>
<th>muc (£/m)</th>
<th>luc (£/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 300</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>300 -600</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>600 -900</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Formwork for vertical face walls.

<table>
<thead>
<tr>
<th></th>
<th>muc (£/m²)</th>
<th>luc (£/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One side of wall shuttered</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Both sides of wall shuttered</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

REINFORCEMENT FOR COLUMNS, WALLS, SLABS, BEAMS AND STAIRCASES

The following are the material unit cost (£/ton) for different categories of reinforcement.

STEEL BARS (BS 4449) (Mild & High yield steel bars)

Straight/ bent bars

<table>
<thead>
<tr>
<th>Dia (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.4</td>
<td>.0</td>
</tr>
<tr>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
</tbody>
</table>

The following are the average labour unit cost (£/hr) for steel bars.

6.5 (£/hr)

REINFORCED CONCRETE TO WALLS AND COLUMNS

Please update the following values of labour unit cost (£/hr).

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>Aggregate</th>
<th>Light</th>
<th>Dense</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 100</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>100 -150</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>150 -300</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>> 300</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Please update the following values of material unit cost (£/m³).

<table>
<thead>
<tr>
<th>Reinforced concrete to walls, columns, slabs, beams & staircases.</th>
<th>Light Aggregate</th>
<th>Dense Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>70.1 (£/m³)</td>
<td>0.0 (£/m³)</td>
<td></td>
</tr>
</tbody>
</table>
FORMWORK FOR STAIRCASES AND SLABS

Please update the values of material unit cost (muc) (£/m²) and labour unit cost (luc) (£/hr) for the following, if required.

<table>
<thead>
<tr>
<th>Formwork for soffits of stairs not exceeding 200 mm thickness.</th>
<th>Formwork for soffits of landings not exceeding 200 mm thickness.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (m) muc luc</td>
<td>Height (m) muc luc</td>
</tr>
<tr>
<td>< 3.5</td>
<td>< 3.5</td>
</tr>
<tr>
<td>18.6 11.5</td>
<td>.0 .0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Formwork to soffits of slabs</th>
<th>Formwork to the vertical edges of slabs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (mm) muc luc</td>
<td>Depth (mm) muc (£/m) luc</td>
</tr>
<tr>
<td><200</td>
<td><250</td>
</tr>
<tr>
<td>.0 .0</td>
<td>.0 .0</td>
</tr>
<tr>
<td>18.6 11.3</td>
<td>250-500</td>
</tr>
<tr>
<td>.0 .0</td>
<td>.0 .0</td>
</tr>
<tr>
<td>300-400</td>
<td>.0 .0</td>
</tr>
</tbody>
</table>

REINFORCED CONCRETE FOR SLABS AND BEAMS

Please update the following values of unit labour cost (£/hr) of for reinforced concrete to slabs, isolated beams, deep beams and staircases.

<table>
<thead>
<tr>
<th>SUSPENDED SLABS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (mm) muc (£/hr)</td>
</tr>
<tr>
<td>< 100</td>
</tr>
<tr>
<td>100 -150</td>
</tr>
<tr>
<td>150 -300</td>
</tr>
<tr>
<td>> 300</td>
</tr>
<tr>
<td>.0 .0 .7.1 .0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ISOLATED BEAMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross Sectional Area (m²) muc (£/hr)</td>
</tr>
<tr>
<td>< 0.03</td>
</tr>
<tr>
<td>0.03 -0.10</td>
</tr>
<tr>
<td>0.10 -0.25</td>
</tr>
<tr>
<td>> 0.25</td>
</tr>
<tr>
<td>.0 .0 .0 .0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEEP BEAMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross Sectional Area (m²) muc (£/hr)</td>
</tr>
<tr>
<td>0.03 -0.10</td>
</tr>
<tr>
<td>0.10 -0.25</td>
</tr>
<tr>
<td>> 0.25</td>
</tr>
<tr>
<td>.0 .0 .0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STAIRCASES</th>
</tr>
</thead>
<tbody>
<tr>
<td>muc (£/hr)</td>
</tr>
<tr>
<td>.7.1</td>
</tr>
</tbody>
</table>
Please update the following values of unit material cost (umc) (£/m²) and unit labour cost (ulc) (£/hr) for precast concrete blocks, (BS6073), compressive strength 7N/mm², in gauged mortar.

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>umc (£/m²)</th>
<th>ulc (£/hr)</th>
<th>muc (£/m²)</th>
<th>luc (£/hr)</th>
<th>Thickness (mm)</th>
<th>umc (£/m²)</th>
<th>ulc (£/hr)</th>
<th>muc (£/m²)</th>
<th>luc (£/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>115</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>125</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>7.0</td>
<td>9.2</td>
<td>0</td>
<td>0</td>
<td>140</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>2.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>190</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>215</td>
<td>2.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Piers

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>umc (£/m²)</th>
<th>ulc (£/hr)</th>
<th>muc (£/m²)</th>
<th>luc (£/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>150</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>190</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

* Extra over unit prices for fair face and flush pointing

Please update the following values of unit material cost (umc) (£/m²) and unit labour cost (ulc) (£/hr) for facing bricks, PC £160 per 1000 in gauged mortar (1:2:9)

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>umc (£/m²)</th>
<th>ulc (£/hr)</th>
<th>muc (£/m²)</th>
<th>luc (£/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>102.5</td>
<td></td>
<td></td>
<td>38.9</td>
<td>8.0</td>
</tr>
<tr>
<td>215</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Walls
- Skins of hollow walls

A8-6
Please update the following values of unit material cost (umc) (£/m²) and unit labour cost (ulc) (£/hr) for precast concrete blocks, (BS6073), compressive strength 7N/mm², in gauged mortar.

<table>
<thead>
<tr>
<th>Walls and partitions</th>
<th>Solids blocks</th>
<th>Hollow blocks</th>
<th>Skins of hollow blocks</th>
<th>Solids blocks</th>
<th>Hollow blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (mm)</td>
<td>umc (£/m²)</td>
<td>ulc (£/hr)</td>
<td>muc (£/m²)</td>
<td>luc (£/hr)</td>
<td>Thickness (mm)</td>
</tr>
<tr>
<td>60</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>90</td>
</tr>
<tr>
<td>75</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>115</td>
</tr>
<tr>
<td>100</td>
<td>7.0</td>
<td>9.2</td>
<td>.0</td>
<td>.0</td>
<td>125</td>
</tr>
<tr>
<td>150</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>140</td>
</tr>
<tr>
<td>200</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>190</td>
</tr>
<tr>
<td>215</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td></td>
</tr>
</tbody>
</table>

Piers

<table>
<thead>
<tr>
<th>Solid blocks</th>
<th>Hollow blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness (mm)</td>
<td>umc (£/m²)</td>
</tr>
<tr>
<td>100</td>
<td>.0</td>
</tr>
<tr>
<td>150</td>
<td>.0</td>
</tr>
<tr>
<td>190</td>
<td>.0</td>
</tr>
<tr>
<td>200</td>
<td>.0</td>
</tr>
<tr>
<td>215</td>
<td>.0</td>
</tr>
</tbody>
</table>

* Extra over unit prices for fair face and flush pointing .0 .0
Please input the quantities and unit costs for Mastic Asphalt BS 988.

20 mm Two coat work rubbed with fine sand; to concrete base: flat coverings:

<table>
<thead>
<tr>
<th>Width</th>
<th>Quantity</th>
<th>u/c (£/hr)</th>
<th>u/m (£/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>over 300 mm wide</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>not exceeding 150 mm wide</td>
<td>1200.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>150 - 300 mm wide</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
APPENDIX 9 OUTPUT SCREENS DURING THE VALIDATION OF THE SIMULATION MODEL.
VALUES OF TIME AND COST FOR THE ACTIVITIES OF:-

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>COST (pound)</th>
<th>TIME (hr)</th>
<th>(day)</th>
<th>(week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXCAVATION FOR:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topsoil to be removed</td>
<td>216.0</td>
<td>10.3</td>
<td>1.3</td>
<td>.3</td>
</tr>
<tr>
<td>Topsoil to be preserved</td>
<td>108.0</td>
<td>5.1</td>
<td>.6</td>
<td>.1</td>
</tr>
<tr>
<td>Reduce level</td>
<td>420.4</td>
<td>20.4</td>
<td>2.5</td>
<td>.5</td>
</tr>
<tr>
<td>Basements</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>Trenches</td>
<td>283.5</td>
<td>13.5</td>
<td>1.7</td>
<td>.3</td>
</tr>
<tr>
<td>COMPACATION OF:</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>The bottom of all excavations</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>EARTHWORK SUPPORT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPACTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

VALUES FOR TIME AND COST FOR THE ACTIVITIES OF REINFORCED CONCRETE FOUNDATIONS

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>COST (pound)</th>
<th>TIME (hr)</th>
<th>(day)</th>
<th>(week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORMWORK</td>
<td>1236.2</td>
<td>21.0</td>
<td>2.6</td>
<td>.5</td>
</tr>
<tr>
<td>REINFORCEMENT</td>
<td>7946.1</td>
<td>8.1</td>
<td>8.1</td>
<td>1.6</td>
</tr>
<tr>
<td>CONCRETE</td>
<td>27128.0</td>
<td>63.2</td>
<td>7.9</td>
<td>1.6</td>
</tr>
<tr>
<td>BLINDING LAYER</td>
<td>893.7</td>
<td>19.0</td>
<td>2.3</td>
<td>.4</td>
</tr>
</tbody>
</table>

VALUES OF TIME AND COST FOR THE ACTIVITIES OF:-

- FORMWORK FOR: COLUMNS AND WALLS, STAIRCASES, SLABS AND BEAMS.
- REINFORCEMENT FOR: COLUMNS AND WALLS, STAIRCASES, SLABS AND BEAMS.
- REINFORCED CONCRETE FOR: COLUMNS AND WALLS, STAIRCASES, SLABS AND BEAMS.

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>COST (pound)</th>
<th>TIME (hr)</th>
<th>(day)</th>
<th>(week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORMWORK FOR:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columns and Walls</td>
<td>1099.8</td>
<td>13.8</td>
<td>1.8</td>
<td>.3</td>
</tr>
<tr>
<td>Slabs and Beams</td>
<td>29100.0</td>
<td>100.0</td>
<td>12.8</td>
<td>2.5</td>
</tr>
<tr>
<td>Staircases</td>
<td>263.0</td>
<td>2.3</td>
<td>1.7</td>
<td>.3</td>
</tr>
<tr>
<td>REINFORCEMENT FOR:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columns and Walls</td>
<td>814.5</td>
<td>16.5</td>
<td>2.1</td>
<td>.4</td>
</tr>
<tr>
<td>Slabs and Beams</td>
<td>15264.0</td>
<td>96.8</td>
<td>11.9</td>
<td>2.4</td>
</tr>
<tr>
<td>Staircases</td>
<td>157.5</td>
<td>5.8</td>
<td>.6</td>
<td>.1</td>
</tr>
<tr>
<td>REINFORCED CONCRETE FOR:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columns and Walls</td>
<td>1317.8</td>
<td>18.8</td>
<td>2.3</td>
<td>.5</td>
</tr>
<tr>
<td>Slabs and Beams</td>
<td>26002.8</td>
<td>27.0</td>
<td>3.5</td>
<td>.7</td>
</tr>
<tr>
<td>Staircases</td>
<td>868.2</td>
<td>.9</td>
<td>.8</td>
<td>.2</td>
</tr>
</tbody>
</table>
VALUES FOR TIME AND COST FOR THE ACTIVITIES OF INTERNAL BRICKWORK AND BLOCKWORK

<table>
<thead>
<tr>
<th></th>
<th>COST (pound)</th>
<th>TIME (hr)</th>
<th>(day)</th>
<th>(week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOCKWORK</td>
<td>6031.2</td>
<td>42.0</td>
<td>5.3</td>
<td>1.0</td>
</tr>
<tr>
<td>BRICKWORK</td>
<td>20380.1</td>
<td>63.0</td>
<td>7.9</td>
<td>1.6</td>
</tr>
</tbody>
</table>

VALUES FOR TIME AND COST FOR THE ACTIVITIES OF INTERNAL BRICKWORK AND BLOCKWORK

<table>
<thead>
<tr>
<th></th>
<th>COST (pound)</th>
<th>TIME (hr)</th>
<th>(day)</th>
<th>(week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLOCKWORK</td>
<td>2983.7</td>
<td>51.8</td>
<td>6.5</td>
<td>1.3</td>
</tr>
<tr>
<td>BRICKWORK</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

ROOF ASPHALT

TIME AND COST VALUES OBTAINED ACCORDING TO NORMAL AND MAXIMUM GANGL SIZES

<table>
<thead>
<tr>
<th>Gang Size</th>
<th>Cost</th>
<th>Hour</th>
<th>Day</th>
<th>Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal 4</td>
<td>15120.0</td>
<td>240.0</td>
<td>30.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Maximum 10</td>
<td>16387.6</td>
<td>114.4</td>
<td>14.3</td>
<td>2.8</td>
</tr>
</tbody>
</table>
APPENDIX 10 THE BAR CHART DRAWN DURING THE VALIDATION OF THE SIMULATION MODEL.
<table>
<thead>
<tr>
<th>Weeks</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substructure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>Excavate/Compact Fnds</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Reduce Level</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Excavate/Furnace Fnds</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Blinding Fnds</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Formwork Fnds</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Reinforcement Fnds</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Concrete Fdn</td>
<td></td>
</tr>
<tr>
<td>Ground Slab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>1st Flr Frc Slab/Beams</td>
<td></td>
</tr>
<tr>
<td>Superstructure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>1st Flr Frc Col/Walls</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2nd Flr Frc Slab/Beams</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Frc Stair</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2nd Flr Frc Col/Walls</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>3rd Flr Frc Slab/Beams</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Frc Stair</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3rd Flr Frc Col/Walls</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>4th Flr Frc Slab/Beams</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Frc Stair</td>
<td></td>
</tr>
</tbody>
</table>

A10-1
SUPERSTRUCT

<table>
<thead>
<tr>
<th>weeks</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>GROUND TO 1ST FLOOR</td>
<td></td>
</tr>
<tr>
<td>9 Frc Cols/ Walls</td>
<td></td>
</tr>
<tr>
<td>10 Frc Slab/ Beams</td>
<td></td>
</tr>
<tr>
<td>11 Frc Stair 1ST TO 2ND FLOOR</td>
<td></td>
</tr>
<tr>
<td>12 Frc Cols/ Walls</td>
<td></td>
</tr>
<tr>
<td>13 2nd Frc Slab/ Beams</td>
<td></td>
</tr>
<tr>
<td>14 Frc Stair 2ND TO 3RD FLOOR</td>
<td></td>
</tr>
<tr>
<td>15 Frc Cols/ Walls</td>
<td></td>
</tr>
<tr>
<td>16 3rd Frc Slab/ Beams</td>
<td></td>
</tr>
<tr>
<td>17 Frc Stair 3RD TO 4TH FLOOR</td>
<td></td>
</tr>
</tbody>
</table>

5TH TO 6TH FLOOR

<table>
<thead>
<tr>
<th>weeks</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 5th Floor</td>
<td></td>
</tr>
<tr>
<td>17 Frc Cols/ Walls</td>
<td></td>
</tr>
<tr>
<td>16 2th Flr Frc Slab/ Beams</td>
<td></td>
</tr>
<tr>
<td>17 Frc Stair 4TH TO 5TH FLOOR</td>
<td></td>
</tr>
<tr>
<td>18 Frc Cols/ Walls</td>
<td></td>
</tr>
<tr>
<td>19 3th Flr Frc Slab/ Beams</td>
<td></td>
</tr>
<tr>
<td>20 Frc Stair 5TH TO 6TH FLOOR</td>
<td></td>
</tr>
<tr>
<td>21 Frc Cols/ Walls</td>
<td></td>
</tr>
<tr>
<td>22 4th Flr Frc Slab/ Beams</td>
<td></td>
</tr>
<tr>
<td>23 Frc Stair 6TH TO 7TH FLOOR</td>
<td></td>
</tr>
</tbody>
</table>

A10-2
<table>
<thead>
<tr>
<th>Weeks</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>2th TO FLOOR</td>
<td>15</td>
<td>Fra Ceil Walls</td>
<td>16</td>
<td>2 thFlo</td>
<td>Fra Slab Beams</td>
<td>17</td>
<td>3rd</td>
<td>Frc Stairs</td>
<td>3th TO</td>
<td>18</td>
<td>Fra Ceil Walls</td>
<td>19</td>
<td>4 thFlo</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>Roof</td>
<td>Fra Slab Beams</td>
<td>26</td>
<td>Internal Walls</td>
<td>27</td>
<td>External Walls</td>
<td>28</td>
<td>Roof</td>
<td>Asphalt</td>
<td>29</td>
<td>Internal Walls</td>
<td>30</td>
</tr>
</tbody>
</table>

A10-3
APPENDIX 11 THE OUTPUT SCREENS FOR ACCELERATION OF THE PROJECT DURATION ACCELERATION BY EMPLOYING MORE LABOUR
<table>
<thead>
<tr>
<th></th>
<th>Normal DC</th>
<th>Dur</th>
<th>Normal Amount</th>
<th>Maximum Amount</th>
<th>Values According to Max. Amount of Plant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excavate topsoil</td>
<td>324.0</td>
<td>1.9</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to be removed/preserved</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excavate to reduce</td>
<td>428.4</td>
<td>2.5</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>levels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excavate for basements</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excavate for trenches</td>
<td>283.5</td>
<td>1.7</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compact the bottom</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>of excavations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Formwork</td>
<td>1236.2</td>
<td>2.6</td>
<td>2</td>
<td>5</td>
<td>1332.3</td>
</tr>
<tr>
<td>Reinforc.</td>
<td>7946.1</td>
<td>8.1</td>
<td>3</td>
<td>4</td>
<td>8185.1</td>
</tr>
<tr>
<td>Concrete</td>
<td>27128.0</td>
<td>7.9</td>
<td>2</td>
<td>7</td>
<td>27802.1</td>
</tr>
<tr>
<td>Blinding</td>
<td>803.7</td>
<td>2.3</td>
<td>2</td>
<td>4</td>
<td>808.0</td>
</tr>
</tbody>
</table>
Time and Cost Values Obtained According to Normal and Maximum Gang Sizes

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Formwork:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Col/wall.</td>
<td>1099.8</td>
<td>1.7</td>
<td>4</td>
<td>8</td>
<td>1160.8</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slab/beam.</td>
<td>29100.0</td>
<td>12.5</td>
<td>6</td>
<td>12</td>
<td>29766.1</td>
<td>6.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staircase.</td>
<td>300.2</td>
<td>.5</td>
<td>2</td>
<td>4</td>
<td>312.3</td>
<td>.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reinfor.:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Col/wall.</td>
<td>814.5</td>
<td>2.1</td>
<td>2</td>
<td>6</td>
<td>816.2</td>
<td>.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slab/beam.</td>
<td>15264.0</td>
<td>12.0</td>
<td>6</td>
<td>9</td>
<td>15272.0</td>
<td>8.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staircase.</td>
<td>157.5</td>
<td>.7</td>
<td>1</td>
<td>2</td>
<td>157.2</td>
<td>.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Col/wall.</td>
<td>1317.8</td>
<td>2.3</td>
<td>2</td>
<td>4</td>
<td>1329.6</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slab/beam.</td>
<td>26002.8</td>
<td>3.4</td>
<td>4</td>
<td>8</td>
<td>26262.0</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staircase.</td>
<td>267.7</td>
<td>.1</td>
<td>2</td>
<td>3</td>
<td>269.2</td>
<td>.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Blockwork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6031.2</td>
<td>5.3</td>
<td>14</td>
<td>6321.1</td>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brickwork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>20380.4</td>
<td>7.9</td>
<td>14</td>
<td>20622.0</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Blockwork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2983.7</td>
<td>6.5</td>
<td>7</td>
<td>3255.3</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brickwork</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ROOF ASPHALT

Time and Cost Values Obtained According to Normal and Maximum Gang Sizes

<table>
<thead>
<tr>
<th>Gang Size</th>
<th>Cost</th>
<th>Hour</th>
<th>Duration Day</th>
<th>Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>4</td>
<td>15120.0</td>
<td>240.0</td>
<td>30.0</td>
</tr>
<tr>
<td>Maximum</td>
<td>10</td>
<td>16387.6</td>
<td>114.4</td>
<td>14.3</td>
</tr>
</tbody>
</table>
APPENDIX 12 OUTPUT FROM THE OPTIMISATION MODEL

DURING THE VALIDATION
THE OPTIMISATION RESULTS FROM THE VALIDATION RUN

1st iteration:
optimal solution/objective function: 0.0
project duration is: 172 days
direct cost increase is: 0.0
indirect cost decrease is: 0.0
project cost increase is: 0.0
new direct project cost is: 676122.9
new indirect project cost is: 16900
new total project cost is: 693022.9

2nd iteration:
optimal solution/objective function: 1.7
project duration is: 171 days
direct cost increase is: 1.7
indirect cost decrease is: 98.256
project cost increase is: -96.556
new direct project cost is: 676124.6
new indirect project cost is: 16801.74
new total project cost is: 692926.3
activity to be accelerated: gr-1 floor / reinforcement for columns/walls

3rd iteration:
optimal solution/objective function: 3.4
project duration is: 170 days
direct cost increase is: 3.4
indirect cost decrease is: 196.512
project cost increase is: -193.112
new direct project cost is: 676126.3
new indirect project cost is: 16703.49
new total project cost is: 692829.8
activity to be accelerated: gr-1 / reinforcement for columns/walls

4th iteration:

optimal solution/objective function: 5.1
project duration is: 169 days
direct cost increase is: 5.1
indirect cost decrease is: 294.768
project cost increase is: -289.667
new direct project cost is: 676128.
new indirect project cost is: 16605.23
new total project cost is: 692733.2
activity to be accelerated: 1-2 / reinforcement for columns/walls

5th iteration:

optimal solution/objective function: 6.8
project duration is: 168 days
direct cost increase is: 6.8
indirect cost decrease is: 393.023
project cost increase is: -386.223
new direct project cost is: 676129.7
new indirect project cost is: 16506.98
new total project cost is: 692636.7
activity to be accelerated: 1-2 / reinforcement for columns/walls

6th iteration:

optimal solution/objective function: 8.5
project duration is: 167 days
direct cost increase is: 8.5
indirect cost decrease is: 491.278
project cost increase is: -482.779
new direct project cost is: 676131.4
new indirect project cost is: 16408.72
new total project cost is: 692540.1

activity to be accelerated: 2-3 / reinforcement for columns/walls

7th iteration:

optimal solution/objective function: 10.2
project duration is: 166 days
direct cost increase is: 10.2
indirect cost decrease is: 589.535
project cost increase is: -579.335
new direct project cost is: 676133.1
new indirect project cost is: 16310.47
new total project cost is: 692443.6

activity to be accelerated: 2-3 / reinforcement for columns/walls

8th iteration:

optimal solution/objective function: 11.9
project duration is: 165 days
direct cost increase is: 11.9
indirect cost decrease is: 687.791
project cost increase is: -675.891
new direct project cost is: 676134.8
new indirect project cost is: 16212.21
new total project cost is: 692347.
activity to be accelerated : 3-4 / reinforcement for columns/walls

9th iteration:
optimal solution/objective function: 13.6
project duration is: 164 days
direct cost increase is: 13.6
indirect cost decrease is: 786.047
project cost increase is: -772.447
new direct project cost is: 676136.5
new indirect project cost is: 16113.95
new total project cost is: 692250.5
activity to be accelerated : 3-4 / reinforcement for columns/walls

10th iteration:
optimal solution/objective function: 15.3
project duration is: 163 days
direct cost increase is: 15.3
indirect cost decrease is: 884.302
project cost increase is: -869.002
new direct project cost is: 676138.2
new indirect project cost is: 16015.7
new total project cost is: 692153.9

activity to be accelerated: 4-5 / reinforcement for columns/walls

11th iteration:

optimal solution/objective function: 17

project duration is: 162 days

direct cost increase is: 17

indirect cost decrease is: 982.558

project cost increase is: -965.558

new direct project cost is: 676139.9

new indirect project cost is: 15917.44

new total project cost is: 692057.3

activity to be accelerated: 4-5 / reinforcement for columns/walls

12th iteration:

optimal solution/objective function: 18.7

project duration is: 161 days

direct cost increase is: 18.7

indirect cost decrease is: 1080.814

project cost increase is: -1062.11

new direct project cost is: 676141.6

new indirect project cost is: 15819.19

new total project cost is: 691960.8

activity to be accelerated: 5-roof / reinforcement for columns/walls
13th iteration:

optimal solution/objective function: 20.4
project duration is: 160 days
direct cost increase is: 20.4
indirect cost decrease is: 1179.07
project cost increase is: -1158.67
new direct project cost is: 676143.3
new indirect project cost is: 15720.93
new total project cost is: 691864.2
activity to be accelerated: 5-roof / reinforcement for columns/walls

14th iteration:

optimal solution/objective function: 82.1
project duration is: 159 days
direct cost increase is: 82.1
indirect cost decrease is: 1277.326
project cost increase is: -1195.23
new direct project cost is: 676205.
new indirect project cost is: 15622.67
new total project cost is: 691827.7
activity to be accelerated: excavate topsoil

15th iteration:

optimal solution/objective function: 163.7
project duration is: 158 days
direct cost increase is: 163.7
indirect cost decrease is: 1375.581
project cost increase is: -1211.88
new direct project cost is: 676286.6
new indirect project cost is: 15524.42
new total project cost is: 691811.
activity to be accelerated : reduce levels

16th iteration:

optimal solution/objective function: 248.21
project duration is: 157 days
direct cost increase is: 248.21
indirect cost decrease is: 1473.837
project cost increase is: -1225.63
new direct project cost is: 676371.1
new indirect project cost is: 15426.16
new total project cost is: 691797.3
activity to be accelerated : roof asphalt

17th iteration:

optimal solution/objective function: 332.72
project duration is: 156 days
direct cost increase is: 332.72
indirect cost decrease is: 1572.093
project cost increase is: -1239.37
new direct project cost is: 676455.6
new indirect project cost is: 15327.91
new total project cost is: 691783.5
activity to be accelerated : roof asphalt
18th iteration:
optimal solution/objective function: 417.23
project duration is: 155 days
direct cost increase is: 417.23
indirect cost decrease is: 1670.349
project cost increase is: -1253.12
new direct project cost is: 676540.1
new indirect project cost is: 15229.65
new total project cost is: 691769.8
activity to be accelerated : roof asphalt

19th iteration:
optimal solution/objective function: 501.74
project duration is: 154 days
direct cost increase is: 501.74
indirect cost decrease is: 1768.605
project cost increase is: -1266.86
new direct project cost is: 676624.6
new indirect project cost is: 15131.4
new total project cost is: 691756
activity to be accelerated : roof asphalt

20th iteration:
optimal solution/objective function: 586.25
project duration is: 153 days
direct cost increase is: 586.25
indirect cost decrease is: 1866.86
project cost increase is: -1280.61
new direct project cost is: 676709.2
new indirect project cost is: 15033.14
new total project cost is: 691742.3
activity to be accelerated : roof asphalt

21st iteration:
optimal solution/objective function: 670.76
project duration is: 152 days
direct cost increase is: 670.76
indirect cost decrease is: 1965.116
project cost increase is: -1294.36
new direct project cost is: 676793.7
new indirect project cost is: 14934.88
new total project cost is: 691728.5
activity to be accelerated : roof asphalt

22nd iteration:
optimal solution/objective function: 755.27
project duration is: 151 days
direct cost increase is: 755.27
indirect cost decrease is: 2063.372
project cost increase is: -1308.1
new direct project cost is: 676878.2
new indirect project cost is: 14836.63
new total project cost is: 691714.8
activity to be accelerated: roof asphalt

23rd iteration:
optimal solution/objective function: 839.78
project duration is: 150 days
direct cost increase is: 839.78
indirect cost decrease is: 2161.628
project cost increase is: -1321.85
new direct project cost is: 676962.7
new indirect project cost is: 14738.37
new total project cost is: 691701.1
activity to be accelerated: roof asphalt

24th iteration:
optimal solution/objective function: 924.29
project duration is: 149 days
direct cost increase is: 924.29
indirect cost decrease is: 2259.884
project cost increase is: -1335.59
new direct project cost is: 677047.2
new indirect project cost is: 14640.12
new total project cost is: 691687.3
activity to be accelerated: roof asphalt

25th iteration:
optimal solution/objective function: 1008.8
project duration is: 148 days
direct cost increase is: 1008.8
indirect cost decrease is: 2358.14
project cost increase is: -1349.34
new direct project cost is: 677131.7
new indirect project cost is: 14541.86
new total project cost is: 691673.6
activity to be accelerated : roof asphalt

26th iteration:
optimal solution/objective function: 1093.31
project duration is: 147 days
direct cost increase is: 1093.31
indirect cost decrease is: 2456.395
project cost increase is: -1363.09
new direct project cost is: 677216.2
new indirect project cost is: 14443.6
new total project cost is: 691659.8
activity to be accelerated : roof asphalt

27th iteration:
optimal solution/objective function: 1177.82
project duration is: 146 days
direct cost increase is: 1177.82
indirect cost decrease is: 2554.651
project cost increase is: -1376.83
new direct project cost is: 677300.7
new indirect project cost is: 14345.35

A12-11
new total project cost is: 691646.1
activity to be accelerated: roof asphalt

28th iteration:
optimal solution/objective function: 1262.33
project duration is: 145 days
direct cost increase is: 1262.33
indirect cost decrease is: 2652.907
project cost increase is: -1390.58
new direct project cost is: 677385.2
new indirect project cost is: 14247.09
new total project cost is: 691632.3
activity to be accelerated: roof asphalt

29th iteration:
optimal solution/objective function: 1346.84
project duration is: 144 days
direct cost increase is: 1346.84
indirect cost decrease is: 2751.163
project cost increase is: -1404.32
new direct project cost is: 677469.7
new indirect project cost is: 14148.84
new total project cost is: 691618.6
activity to be accelerated: roof asphalt
30th iteration:

optimal solution/objective function: 1431.35
project duration is: 143 days
direct cost increase is: 1431.35
indirect cost decrease is: 2849.419
project cost increase is: -1418.07
new direct project cost is: 677554.3
new indirect project cost is: 14050.58
new total project cost is: 691604.8
activity to be accelerated: roof asphalt

31st iteration:

optimal solution/objective function: 1560.95
project duration is: 142 days
direct cost increase is: 1560.95
indirect cost decrease is: 2947.674
project cost increase is: -1386.72
new direct project cost is: 677683.9
new indirect project cost is: 13952.33
new total project cost is: 691636.2
activity to be accelerated: concrete for roof slabs/beams
optimum duration is: 143 days

32nd iteration:

optimal solution/objective function: 1690.55
project duration is: 141 days
direct cost increase is: 1690.55
indirect cost decrease is: 3045.93

project cost increase is: -1355.38

new direct project cost is: 677813.5

new indirect project cost is: 13854.07

new total project cost is: 691667.5

activity to be accelerated : concrete for roof slabs/beams

33rd iteration:

optimal solution/objective function: 1825.35

project duration is: 140 days

direct cost increase is: 1825.35

indirect cost decrease is: 3144.19

project cost increase is: -1318.8

new direct project cost is: 677948.0

new indirect project cost is: 13755.8

new total project cost is: 691704.0

activity to be accelerated : formwork for foundations

34th iteration:

optimal solution/objective function: 1960.15

project duration is: 139 days

direct cost increase is: 1960.15

indirect cost decrease is: 3242.44

project cost increase is: -1282.3

new direct project cost is: 678083.0

new indirect project cost is: 13657.6

new total project cost is: 691741.0
activity to be accelerated: formwork for foundations

35th iteration:

optimal solution/objective function: 2094.95
project duration is: 138 days
direct cost increase is: 2094.95
indirect cost decrease is: 3340.7
project cost increase is: -1245.7
new direct project cost is: 678218.0
new indirect project cost is: 13559.3
new total project cost is: 691777.0
activity to be accelerated: formwork for foundations

36th iteration:

optimal solution/objective function: 2229.75
project duration is: 137 days
direct cost increase is: 2229.75
indirect cost decrease is: 3438.95
project cost increase is: -1209.2
new direct project cost is: 678353.0
new indirect project cost is: 13461.0
new total project cost is: 691814.0
activity to be accelerated: formwork for foundations
APPENDIX 13 CODING FOR THE TIME/COST MODEL
'MAIN MENU'

seek sta
use screen_start2
run file_startnext(act_start,filesn)
run start_escape()

'SITE SET UP'

seek site_set_up
run con_set2(sit)
run cost_set2(csit)
run con_seta2(sita)
run lag_mains2(lagmain)
run lag_mains2m(lagmainm)
run co_opta(sicoo)
run ntore5(new5)
run co_optfa(sopt)

if new5 is 'y' then
run ss0(s86,s96,s137,s162,s187,s281,s368,s455,s464,s39,s40
s37,s42,s46,s47,s48,s49,s50,s51,s52,s54,s55,s56,s57,s58,s59,
s60,s62,s63,s64,s65,s66,s67,s68,s106,s107,s108,s109,s110,s111,
s112,s82,s24,s22,s24,s133,s158,s183,s183,s461,s461,s158,
s461,lt_lr,lr_lb,lb_lt,lt_lc,s462,s44,s53,s61,s69,s40,s43,s9,
s10,s11,s12,s13,s14,s15,s16,s17,s18,s27,s28,s29,s30,s31,s32,
s33,s34,lt_lrm,lr_lbm,lb_ltm,lt_lcm)
if new5 is 'y' then
run ssol(sitotc,sdat,s896,s897,s897m,s138m,s163m,s188m,
s465m,s896m,s137m,s162m,s187m,s464m,sitotcm,sdatm,s8m,s20m,
s22m,s24m,s82m,s133m,s158m,s183m,s462m,s138,s163,s188,
s465,s137,s162,s187,s464,s8,s20,s22,s24,s82,s133,s158,s183,
s462)

use screen_4st
if st4 is '(1)' then
use screen4
if st4 is '(2)' then
use screen2
if st4 is '(3)' then
use screen1
if st4 is '(4)' then
 use screen5

if st4 is '(5)' then
 use screen_co_site

if st4 is '(7)' then
 use screen_optbb

if st4 is '(8)' then
 use screen_op

if st4 is '(9)' then
 run st_return()

run s7(s8,s9,s10,s11,s12,s13,s14,s15,s16,s17,s18,s19)
run s7(s20,s9,s10,s11,s12,s13,s14,s15,s16,s17,s18,s21)
run s7(s22,s9,s10,s11,s12,s13,s14,s15,s16,s17,s18,s23)
run s7(s24,s9,s10,s11,s12,s13,s14,s15,s16,s17,s18,s25)
run s7(s8m,s9,s10,s11,s12,s13,s14,s15,s16,s17,s18,s19m)
run s7(s20m,s9,s10,s11,s12,s13,s14,s15,s16,s17,s18,s21m)
run s7(s22m,s9,s10,s11,s12,s13,s14,s15,s16,s17,s18,s23m)
run s7(s24m,s9,s10,s11,s12,s13,s14,s15,s16,s17,s18,s25m)
run s26(s27,s28,s29,s30,s31,s32,s33,s34,compl,s36)
run s26(s27,s28,s29,s30,s31,s32,s33,s34,complm,s36m)

/*VOLUME OF EXCAVATED TOPSOIL TO BE REMOVED / PRESERVED

if s37>= 0 then
 run volumes(s39,s37,s40)

if s41>=0 or s42>=0 or s40>=0 then
 run s38(s41,s42,s43)

if s43>=0 then
 s44=s40+s43

if s44 > 999999.9 then
 s44=999999.9

if s44=0 then s8=0

/*VOLUME OF EXCAVATION TO REDUCE LEVEL/BASEMENTS/TRENCHES

run vol(s46,s47,s48,s49,s50,s51,s52,s53)
run s45(s54,s55,s56,s57,s58,s59,s60,s61)
if s896 > 999999.9 then
s896 = 999999.9

if s897 > 999999.9 then
s897 = 999999.9

if s896m > 999999.9 then
s896m = 999999.9

if s897m > 999999.9 then
s897m = 999999.9

if s97 > 999999.9 then
s97 = 999999.9

if s97m > 999999.9 then
s97m = 999999.9

/* REDUCE LEVEL/BASEMENTS/TRENCHES
run s99(s46,s47,s48,s49,s50,s51,s52,s54,s55,s56, s57, s58, s59,
s60,s62,s63,s64,s65,s66,s67,s68,s100,s101,s102,s103,s104,s105)
run s73(s70,s74)
/*REDUCE LEVEL

if s53>=0 and
s106>=0 and
s107>= 0 and
s108>=0 and
s109>=0 and
s110>=0 and
s111>=0 and
s112>=0 then
run s113(s106,s46,s114,s115);
run s113(s107,s47,s116,s117);
run s113(s108,s48,s118,s119);
run s113(s109,s49,s120,s121);
run s113(s110,s50,s122,s123);
run s113(s111,s51,s124,s125);
run s113(s112,s52,s126,s127);
s128=s115+s117+s119+s121+s123+s125+s127

if s128> 999999.9 then
s128=999999.9

if s114>=0
or s116>=0
or s118>=0
or s120>=0
or s122>=0
or s124>=0
or s126>=0
then run s78(s20,s1290,s1300);
run s78(s20m,s1290m,s1300m)

if s128>=0

A13-4
then run s131(s46,s47,s48,s49,s50,s51,s52,s114,s116,s118,
S120,s122,s124,s126,s115,s117,s119,s121,s123,s125,s127,s132)
if s128=0 then s132=0
if s128>=0 then
 run s81(s53,s1290,s101,s74,s132,s1300,s133,s21,snor2,s134,
s135,s136, s137);
s138=s136/8;
s139=s138/5;
s81 (s53, s1290m, s101, s74, s132, s1300m, s133m, s21m, snor2,
s134m,s135m,s136m,s137m);
s138m=s136m/8

/* BASEMENTS

if s61>=0 then
 run s113(s106,s54,s140,s141);
 run s113(s107,s55,s142,s143);
 run s113(s108,s56,s144,s145);
 run s113(s109,s57,s146,s147);
 run s113(s110,s58,s148,s149);
 run s113(s111,s59,s150,s151);
 run s113(s112,s60,s152,s153);
 s154=s141+s143+s145+s147+s149+s151+s153

if s154 >999999.9 then
 s154 = 999999.9
if s140>=0
or s142>=0
or s144>=0
or s146>=0
or s148>=0
or s150>=0
or s152>=0
then run s78(s22,s155,s156);
run s78(s22m,s155m,s156m)

if s154>=0 then
 run s131(s54,s55,s56,s57,s58,s59,s60,s140,s142,s144,s146, s148,
s150,s152,s141,s143,s145,s147,s149,s151,s153,s157)
if s154=0 then s157=0
if s154 >=0 then
 run s81(s61,s155,s103,s74,s157,s156,s158,s23,snor3, s159, s160,
s161,s162);
s163=s161/8;
s164=s163/5;
run s81 (s61, s155m, s103, s74, s157, s156m, s158m, s23m,snor3,
s159m,s160m,s161m,s162m);
s163m=s161m/8

/* TRENCHES

if s69>=0 then
 run s113(s106,s52,s165,s166);
 run s113(s107,s53,s167,s168);
 run s113(s108,s54,s169,s170);
run s113(s109,s55,s171,s172);
run s113(s110,s56,s173,s174);
run s113(s111,s57,s175,s176);
run s113(s112,s58,s177,s178);
sl79=sl66+sl68+sl70+sl72+sl74+sl76+sl78
if sl79 > 999999.9 then
 sl79=999999.9
if sl165>=0
or sl167>=0
or sl169>=0
or sl171>=0
or sl173>=0
or sl175>=0
or sl177>=0
then run s78(s24,s180,s181);
run s78(s24m,s180m,s181m)
if sl79>=0 then
run s131(s62,s63,s64,s65, s66, s67, s68, s165, s167, s169,s171,
s173, s175,s177,s166,s168,s170,s172,s174,s176,s178,s182)
if sl79>=0 or sl183>=0 then
run s81(s69,s180,s105,s74,s182,s181,s183,s25, snor4, s184, s185,
s186, s187);
s188=s186/8;
s189=s188/5;
run s81(s69,s180m,s105,s74,s182,s181m,s183m,s25m, snor4, s184m,
s185m,s186m,s187m);
s188m=s186m/8
/* COMPACT BOTTOMS OF EXCAVATIONS
run s458(compl,s459)
run s460(s461,s459,s462,s36,snor5,s463,s464)
run s458(complm,s459m)
run s460(s461,s459m,s462m,s36,snor5m,s463m,s464m)
if s463>= 0 then
s465=s463/8;
s466=s465/5;
s465m=s463m/8;
lb_lt=0;
l_t_lc=0
if lt_lr >=0 or lr_lb>=0 or lb_lt>=0 or lt_lc>=0 then
run stt(s897,s138,s163,s188,s465,lt_lr,lr_lb,lb_lt,l_t_lc, sdat,
shrt,swet,Send);
if lt_lrm >=0 or lr_lbm>=0 or lb_ltm>=0 or lt_lcm>=0 then
run stt (s897m, s138m, s163m, s188m, s465m,lt_lrm,lr_lbm,
lb_ltm,lt_lcm,sdatm,shrtm,swetm,Sendm)
if st4 is '(6)'
then
use screen_final
run co_sit(s86,s96,s137,s162,s187,s464,sitotc)
run co_sit(s86m,s96m,s137m,s162m,s187m,s464m,sitotcm)
run con_set(s39,s40,s37,s42,s46,s47,s48,s49,s50,s51,s52,s54,
s55,s56,s57,s58,s59,s60,s62,s63,s64,s65,s66,s67,s68,s106,
s107,s108,s109,s110,s111,s141,s112,s8,s20,s22,s24,s82,
s133,s158,s183,s766,s70,sit)
run con_seta(s461,lt_lr,lr_lb,lb_lt,lt_lc,s462,s44,s53,
s61,s69,s40,s43,compl,sita)
run cost_set(s9,s10,s11,s12,s13,s14,s15,s16,s17,s18,s27,s28,
s29,s30,s31,s32,s33,s34,csit)
run co_opt(sitotc,sdat,sitotcm,sdatm,s897m,s138m,s163m,
s188m,s465m,s896m,s137m,s162m,s187m,s464m,s896,s897,s8m,
s20m,s22m,s24m,s26m,s133m,s158m,s183m,s462m,s138,s163,s188,
s465,s137,s162,s187,s464,s8,s20,s22,s24,s82,s133,s158,s183,s462,
compl,complm,sicoo)
run co_optf(sdat,sdatm,Send,Sendm,snor1,snor2,snor3,snor4,
snor5,sopt)
run finsset(s88,s98,s139,s164,s189,s466,lt_lr,lr_lb,lb_lt,
lt_lc,gral)
if st4 is not '(9)'
then
run set_return()
run dummy2(new_project)
run nstore5(new_project,new5)
run exc_escape()

CONCRETE FOUNDATIONS'
seek foundation_concrete
run lag_mains2(lagmain)
run lag_mains2m(lagmainm)
run con_fou2(ffo)
run cost_form2(cform)
run cost_fou2(cffo)
run co_opt2(coofo)
run nstore4(new4)
run co_optf2(fopt)
if new4 is 'y' or new4 is 'n' or lag_sifo>=0 or f1_f2>=0 or f2_f3>=0 or lag_sifom>=0 or f1_f2m>=0 or f2_f3m>=0 then

lt_lr=0;
lr_lb=0;
lb_lt=0;
lt_lc=0;
lt_lrm=0;
lr_lbm=0;
lb_ltm=0;
lt_lcm=0;
f129 =0;
f130 = 0 ;
f131 =0 ;
f132 = 0 ;
f133 =0 ;
f134 = 0 ;
f135 =0 ;
f136 = 0 ;
f137 =0 ;
f208 = 0 ;
f209 =0 ;
f210 = 0 ;
f211 =0 ;
f212= 0 ;
f213 =0 ;
f214 = 0 ;
f215 = 0 ;
ac=0

if new4 is 'y' then
run cono_fou(f6,f7,f8,f9a, f18, f19, f20, f21, f29, f30, f31, f32,f40,f49,f50,f51,f52,f61,f62,f63,f64,f72,f73,f74,f75, f83, f84,f85,f86,f94,f95,f96,f97,f105,f114,f115, f116, f117, f118, f119,f120,f121,f122,f123,f129,f130,f131,f132,f133,f134, f135, f136,f141,f142,f143,f144,f145,f146,f160,f161,f162,f163, f166, f167,f168,f169,f172,f175,f176,f177,f178,f14, f14, f125, f180, f180,f44,f109,f155,f181,f449,f45,f110,f156, f182, f182, f461, f157,f183,f183,f1_f2,f2_f3,f2_f3);

run cono_pro(f125m,f14m,f241,f238, f2394, f451, f241m, f238m, f2394m,f182m,f156m,f451m,cofoototm, fodatm, f180m, f14b,f14bm, f15,f15m,f451b,f451bm,f461b,f16,f16m,f1_f2m,f2_f3m)

use screen_2st

if st2 is '(1)' then
use screen21

if st2 is '(2)' then
use screen21c

if st2 is '(3)' then
use screen_gangsize2
if st2 is '(4)' then
use screen_ac

if st2 is '(6)' then
use screen_optfo

if st2 is '(7)' then
use screen_out

if st2 is '(8)' then
run st_return

if ac = 1 then
use screen_ov;
if ac=2 then
use screen_gangsize2;
use screen_lab

run f5(f6,f7,f8,f9a,f10,f11,f12,f13,fnor1,f14b, f194, ac,whb, whlb,f14bm,glb,glb1,ffm,f15,f16,f451bm,f16m)

run f17(f18,f19,f20,f21,f22,f23,f24,f25,fnor4,f26,f27)
run f28(f29,f30,f31,f32,f33,f34,f35,fnor41,f37, f38)
run f39(f40,f41,fnor2,f42,f43)

/* TOTAL TIME FOR PLAIN CONCRETE (gangsize is taken into account here)

if f14=0 then
f44=0;
f45=0;
f46=0

if f14m=0 then
f45m=0

if f14>0 then
f47=f26+f37+f42;
f44=f47/f14;
f45= f44/8;
f46=f45/5

if ac=1 and f14>0 then
f47=f15+f26+f37+f42;
wh3=whlc*whc/100-0.40*whlc;
f45m=f47/f14/8*40/whc+wh3

if ac=2 then
f47=f15+f26+f37+f42;
ffm3=f47/f14m/8;
run Aa(f14m,f14,ffm3,glc,glcl,f45m,Ra3)
if f47> 999999.9 then
f47=999999.9
if f44> 999999.9 then
f44=999999.9

if f45> 999999.9 then
f45=999999.9

if f46> 999999.9 then
f46=999999.9

if f1_f2 >=0 or f2_f3>=0 or f1_f2m>=0 or f2_f3m>=0 then
run f48(f49,f50,f51,f52,f53,f54,f55,f56,fnor3,f58
f59)

run f60(f61,f62,f63,f64,f65,f66,f67,f68,fnor4,f69,f70)

run f71(f72,f73,f74,f75,f76,f77,f78,f79,fnor42,f80,
f81)

run f82(f83,f84,f85,f86,f87,f88,f89,f90,fnor41,f91,
f92)

run f93(f94,f95,f96,f97,f98,f99,f100,f101,fnor43,
f102, f103)

run f104(f105,f106,fnor2,f107,f108)

/*TOTAL TIME FOR REINFORCED CONCRETE

if f14=0 then
f109=0;
f110=0;
f111=0

if f14m=0 then
f110m=0

if f14>0 then
f112=f58+f69+f80+f91+f102+f107;
f109=f112/f14;
f110=f109/8;
f111=f110/5

if ac=1 and f14>0 then
f112=f58+f69+f80+f91+f102+f107;
wh3=whlc*whc/100-0.40*whlc;
f110m=f112/f14/8*40/whc+wh3

if f110m <0 then
f110m=0

if ac=2 then
f112=f58+f69+f80+f91+f102+f107;
ffm4=f112/f14m/8;
run Aa(f14m,f14,ffm4,glc,glcl,f110m,Ra4)

if f15>=0 then
f451b=f15/8;
f461b=f15/5/8
if f109 > 999999.9 then
 f109=999999.9
if f110 > 999999.9 then
 f110=999999.9
if f111 > 999999.9 then
 f111=999999.9
if f112 > 999999.9 then
 f112=999999.9
if f15 > 999999.9 then
 f15=999999.9
if f4499 > 999999.9 then
 f4499=999999.9
run f113(f114,f115,f116,f117,f118,f119,f120,f121,f122,f123,f124,fnor5,f126,f127)
run f140(f141,f142,f143,f144,f145,f146,f147,f148,f149,f150,f151,f152,fnor6,f153,f154)

/*TOTAL TIME FOR REINFORCEMENT
if f125=0 then
 f155=0;
 f156=0;
 f157=0
if f125m=0 then
 f156m=0
if f125>0 then
 f1588=f126+f153;
 f155=f1588/f125;
 f156=f155/8;
 f157=f156/5
if ac=1 and f125>0 then
 f1588=f126+f153;
 whl=whlr*whr/100-0.40*whlr;
 f156m=f1588/f125/8*40/whc+whl
if f156m<0 then
 f156m=0
if ac=2 then
 f1588=f126+f153;
 ffm1=f1588/f125m/8;
run Aa(f125m,f125,ffm1,glr,glrl,f156m,Ral)
run fl65(fl66, fl67, fl68, fl69, lfm5, lfm6, lfm7, lfm8, fnor7, fl70, cf710)
run fl71(f172, lfm9, fnor7, fl73, cf713)
run f174(fl75, f176, f177, fl78, lfm10, lfm11, lfm12, lfm13, fnor7, fl79, cf719)

/*TOTAL TIME FOR FORMWORK
if f180=0 then
f181=0
if f180>0 then
f1844=f164+f170+f173+f179;
f181=f1844/f180;
f182=f181/8;
f183=f182/5
if ac=1 and f180>0 then
f1844=f164+f170+f173+f179;
wh=whlf*whlf/100-0.40*whlf;
f182m=f1844/f180/8*40/whf+wh
if f182m<0 then
f182m=0
if ac=2 then
f1844=f164+f170+f173+f179;
ffm=f1844/f180m/8;
run Aa(f180m, f180, ffm, glf, glf1, f182m, Ra)
if f1844>999999.9 then
f1844=999999.9
if f184 > 999999.9 then
f184=999999.9
if f1844m>999999.9 then
f1844m=999999.9
if f184m> 999999.9 then
f184m=999999.9
if f1588>999999.9 then
f1588=999999.9
if f158 > 999999.9 then
f158=999999.9
if f1588m>999999.9 then
f1588m=999999.9
if f!58m > 999999.9 then
f!58m=999999.9

if f!81 > 999999.9 then
f!81=999999.9

if f!82 > 999999.9 then
f!82=999999.9

if f!83 > 999999.9 then
f!83=999999.9

if f!82m > 999999.9 then
f!82m=999999.9

if f!55 > 999999.9 then
f!55=999999.9

if f!56 > 999999.9 then
f!56=999999.9

if f!57 > 999999.9 then
f!57=999999.9

if f!56m > 999999.9 then
f!56m=999999.9

if f44>=0 then
f449=f109+f44;
f451=f449/8;
f461=f451/5

if f449 > 999999.9 then
f449=999999.9

if f451 > 999999.9 then
f451=999999.9

if f461 > 999999.9 then
f461=999999.9

if f15 > 999999.9 then
f15=999999.9

if f451b > 999999.9 then
f451b=999999.9

if f461b > 999999.9 then
f461b=999999.9

if f451bm > 999999.9 then
f451bm=999999.9

if fllOm >= 0 then
f451m=fllOm+f45m

if f451m > 999999.9 then
f451m=999999.9
run f189(f45, f110, f156, f182, f191)
run f189(f46, f111, f157, f183, f192)
run f189(f6, f7, f8, f9a, f18, f19, f20, f21, f29, f30, f31, f32, f40, f49, f50, f51, f52, f61, f62, f63, f64, f72, f73, f74, f75, f83, f84, f85, f86, f94, f95, f96, f97, f105, f194, f195, f196)
run f197(f114, f115, f116, f117, f118, f119, f120, f121, f122, f123, f141, f142, f143, f144, f145, f146, f160, f161, f162, f163, f166, f167, f168, f169, f172, f175, f176, f177, f178, f198, f199, f200, f201, f202, f203, f204, f205, f206, f207, f216, f217, f218, f219, f220, f221, f222, f223, f224, f225, f226, f227, f228, f229, f230, f231, f232, f233, f234, f235, f236)
run f237(f235, f127, f154, f195, f27, f38, f43, f196, f59, f70, f92, f81, f103, f108, ac, f14m, f14, whl, wh3, f125m, f125, glr, glrl, glc, glcl, f238, f2394, f2394m, f238m)
run fcoform(cf164, cf170, cf173, cf179, f236, whf, ac, wh, fl180, fl180m, glf, glfl, f241, f241m)

if lag_sifo>=0 then
run fot(lag_sifo, f182, f156, f451, f1_f2, f2_f3, fodat, fohrt, fowet, Fend);
if lag_sifom>=0 then
run fot(lag_sifom, f182m, f156m, f451m, f1_f2m, f2_f3m, fodatm, fohrtm, fowetm, Fendm)

if st2 is '(1)' or
st2 is '(2)' or
st2 is '(3)' or
st2 is '(6)' then
run found_return();

if st2 is '(4)' then
use screen_optfo;
run found_return();
if st2 is '(5)' then
use screen_final2;
run found_return();
run cototfou(f241, f238, f2394, f16, cofotot)
run cototfou(f241m, f2394m, f16m, cofototm)
run con_fou(f6, f7, f8, f9a, f18, f19, f20, f21, f29, f30, f31, f32, f40, f49, f50, f51, f52, f61, f62, f63, f64, f72, f73, f74, f75, f83, f84, f85, f86, f94, f95, f96, f97, f105, f114, f115, f116, f117, f118, f119, f120, f121, f122, f123, f129, f130, f131, f132, f133,
f134, f135, f136, f141, f142, f143, f144, f145, f146, f160, f161, f162, f163, f166, f167, f168, f169, f172, f175, f176, f177, f178, f14, f14, f125, f180, f44, f109, f155, f181, f181, f45, f110, f156, f182, f182, f461, f157, f183, f183, f449, ffo)

run cost_fou(fl0, f11, f12, f13, f22, f23, f24, f25, f33, f34, f35, f36, f41, f53, f54, f55, f56, f65, f66, f67, f68, f76, f77, f78, f79, f87, f88, f89, f90, f98, f99, f100, f101, f106, f124, f137, f147, f148, f149, f150, f151, f152, f194, f198, f199, f200, f201, f202, f203, f204, f205, f206, f207, f208, f209, f210, f211, f212, f213, f214, f215, f216, f217, f218, f219, f220, f221, f222, f223, f224, f225, f226, f227, f228, f229, f230, f231, f232, f233, f234, cofotot, cffo)

run cost_form(lfml, lfml, lfml, lfml, lfml, lfm7, lfm7, lfm8, lfm8, lfm9, lfm10, lfm11, lfm12, lfm13, whf, whr, whc, whb, whl, whl1, glf, glr, glc, glb, glf1, glr1, glc1, glb1, cform)

run co_opt(cofotot, fodat, cofototm, fodatm, f2394m, f182m, f156m, f451m, f241, f239, f2394, f451, f2394m, f2398m, f180m, f125m, f14m, f14b, f14bm, f16, f16m, f15, f451b, f451bm, f461b, f182, f156, ccofo)

run co_optf(fodat, fodatm, Fend, Fendm, fnor1, fnor2, fnor3, fnor4, fnor41, fnor42, fnor43, fnor5, fnor6, fnor7, fopt)

run fin_found(f183, f157, f461, f1_f2, f2_f3, f461b, foungr)

run dummy2(new_project)

run nstore4(new_project, new4)

run foun_escape()
'TYPICAL FLOOR'

seek typical_floor

run lag_mains2(lagmain)
run lag_mains2m(lagmainm)
run con_tyf2(typ)
run con_tyfa2(typa)
run num3a(noo3)
run ora2(unor)
run cost_typ2(ctyp)
run cost_typa2(ctypa)
run co_opt2(fltcoos)
run ntorel(newl)

if newl is 'y' or newl is 'n' then
 tf166 =0;
 tf167 =0;
 tf168 =0;
 tf169 =0;
 tf170 =0;
 tf171 =0;
 tf172 =0;
 tf173 =0;
 tf266 =0;
 tf267 =0;
 tf268 =0;
 tf269 =0;
 tf270 =0;
 tf271 =0;
 tf272 =0;
 tf273 =0;
 tf274 =0;
 tf275 =0;
 tf276 =0;
 tf277 =0;
 tf278 =0;
 tf279 =0;
 tf280 =0;
 tf281 =0;
 tf52 =0;
 tf53 =0;
 tf54 =0;
 tf55 =0;
 tf56 =0;
 tf57 =0;
 tf58 =0;
 tf59 =0;
 tf60 =0;
if new1 is 'y' or new1 is 'n' then
lt_lr=0;
lr_lb=0;
lb_lt=0;
lt_lc=0;
fl_f2=0;
f2_f3=0;
lt_lrm=0;
lr_lbm=0;
lb_ltm=0;
lc_lcm=0;
fl_f2m=0;
f2_f3m=0;
lag_sifo=0;
lag_fogrm=0;
lag_grfirm=0;
lag_grfir=0;
lag_sifom=0;
lag_fogr=0;
lag_sifo=0;

if new1 is 'y' then
run con_tyfk(tf8, tf9, tf10, tf11, tf12, tf13, tf14, tf15, tf16, tf32, tf33, tf34, tf35, tf36, tf37, tf38, tf39, tf40, tf41, tf42, tf43, tf44, tf45, tf46, tf47, tf48, tf49, tf50, tf51, tf52, tf53, tf54, tf55, tf56, tf57, tf58, tf59, tf60, tf61, tf62, tf63, tf64, tf65, tf66, tf67, tf75, tf76, tf77, tf78, tf79, tf80, tf81, tf82, tf83, tf84, tf85, tf86, tf87, tf88, tf89, tf90, tf136, tf137, tf138, tf139, tf139, tf118, tf119, tf156, tf157, tf158, tf159, tf160, tf161, tf162, tf163, tf164, tf165, tf166, tf167, tf168, tf169, tf170, tf171, tf172, tf173, tf180, tf1810, tf182, tf183, tf184, tf185, tf186, tf187, tf311, no3)

if new1 is 'y' then
run con_tyfak(tf17, tf67, tf91, tf140, tf174, tf242, tf282, tf290, tf141, tf196, tf197, tf198, tf199, tf200, tf201, tf202, tf203, tf204, tf205, tf206, tf207, tf208, tf209, tf210, tf211, tf212, tf213, tf214, tf215, tf216, tf217, tf218, tf219, tf220, tf221, tf222, tf223, tf224, tf225, tf226, tf227, tf228, tf229, tf230, tf231, tf232, tf233, tf234, tf235, tf236, tf237, tf238, tf239, tf240, tf241, tf242, tf243, tf244, tf245, tf246, tf247, tf248, tf249, tf250, tf251, tf252, tf253, tf254, tf255, tf256, tf257, tf258, tf259, tf260, tf261, tf262, tf263, tf264, tf265, tf266, tf267, tf268, tf269, tf270, tf271, tf272, tf273, tf274, tf275, tf276, tf277, tf278, tf279, tf280, tf281, tf282, tf283, tf284, tf285, tf286, tf287, tf288, tf289, tf290, tf291, tf292, tf293, tf294, tf295, tf296, tf297, tf298, tf299, tf300, tf301, tf302, tf303, tf304, tf305, tf306, tf307, tf308, tf309, tf310, tf311, no3)
if new1 is 'y' then
run co_fld(fltcos,fdat,tf205,tf206,tf207,tf208,tf209,tf220,tf221,tf222,tf223,tf224,tf225,tf226,tf227,tf228,tf229,tf246,tf247,tf248,tf249,tf250,tf251,tf252,tf253,tf254,tf255,tf256,tf257,tf258,tf259,tf260,tf261,tf262,tf263,tf264,tf265,tf266,tf267,tf268,tf269,tf270,tf271,tf272,tf273,tf274,tf275,tf276,tf277,tf278,tf279,tf280,tf281,tf122,tf123,tf124,tf125,tf126,tf127,tf128,tf129,tf130,tf131,tf132,lag_cw1,lag_cw2,lag_sbl,lag_sblm,lag_sc1,lag_sc2,lag_sbsl,lag_sbsbl,lag_cw2,lag_sblm,lag_sc1m,lag_sbs1m,lag_sclm,lag_sclm,lag_sclm,lag_cwsblm,lag_sbslm)

use screen_3st
if st3 is '(0)' then
use screen_no3;
ac=3

if st3 is '(1)' then
use screen31;
ac=3

if st3 is '(2)' then
use screen31c;
ac=3

if st3 is '(3)' then
use screen_gangsize;
ac=3

if st3 is '(4)' then
use screen_ac
if st3 is '(6)' then
use screen_ac;
acc=1
if st3 is '(7)' then
use screen_or;
ac=3
if st3 is '(8)' then
ac=3;
run st_return
if ac =1 and
acc = 1 then
use screen_ov;
if ac = 2 and
acc = 1 then
use screen_gangsize;
use screen_lab

if st3 is '(5)' then
ac = 3
run tf7(tf8, tf9, tf10, tf11, tf12, tf13, tf14, tf15, tf16, tf17, tf18, tf19, tf20, tf21, tf22, tf23, tf24, tf25, tf26, no3, unor3, ac, whf, whlf, tf17m, glf, glfl, tf27, tf28, tf29, whl, tf28m)

if tf28 >= 0 then
tf30 = tf28/5

if tf30 > 999999.9 then
tf30 = 999999.9
run tf31(tf32, tf33, tf34, tf35, tf36, tf37, tf38, tf39, tf40, tf41, tf42, tf43, tf44, tf45, tf46, tf47, tf48, tf49, tf50, tf51, tf67, tf68, no3, unor2, ac, whr, whlr, tf67m, glr, glrl, tf70, tf71, tf72, tf71m, wh2)

if tf71 >= 0 then
tf73 = tf71/5

if tf73 > 999999.9 then
tf73 = 999999.9
run tf74(tf75, tf76, tf77, tf78, tf79, tf80, tf81, tf82, tf83, tf84, tf85, tf86, tf87, tf88, tf89, tf90, tf91, tf92, tf93, tf94, tf95, tf96, tf97, tf98, tf99, tf100, tf101, tf102, tf103, tf104, tf105, tf106, tf107, no3, unor1, ac, whc, whlc, tf91m, glc, glcl, tf108, tf109, tf110, tf111, tf112, tf111m, wh3)

run tf113(tf75, tf76, tf77, tf78, tf79, tf80, tf81, tf82, tf83, tf84, tf85, tf86, tf87, tf88, tf89, tf90, tf114, tf115, no3, tf116)

run tf117(tf118, tf119, tf114, tf115, no3, tf120)

210: run
tf121(tf122, tf123, tf124, tf125, tf126, tf127, tf128, tf129, tf130, tf131, tf132, tf114, tf115, no3, tf133)

if tf111 >= 0 then
tf134 = tf111/5

if tf134 > 999999.9 then
tf134 = 999999.9
run tf135(tf136, tf137, tf138, tf139, tf118, tf119, tf140, tf141, tf142, tf143, tf144, tf145, tf146, no3, unor9, unor7, ac, whf, whl, tf140m, glf, glfl, whc, wh3, tf141m, glc, glc1, tf147, tf148, tf149, tf150, tf151, tf152, tf149m, tf150m)
if tf150 >= 0 then
tf153 = tf150/5

if tf149 >= 0 then
tf154 = tf149/5

if tf153 > 999999.9 then
tf153 = 999999.9

if tf154 > 999999.9 then
tf154 = 999999.9

run tf155(tf156, tf157, tf158, tf159, tf160, tf161, tf162, tf163,
 tf164, tf165, tf166, tf167, tf168, tf169, tf170, tf171, tf172, tf173,
 tf174, tf168, tf169, no3, unor8, ac, whr, wh2, tf174m, glr, glrl,
 tf175, tf176, tf177, tf176m)

if tf176 >= 0 then
tf178 = tf176/5

if tf178 > 999999.9 then
tf178 = 999999.9

run tf179(tf180, tf181, tf182, tf183, tf184, tf185, tf186, tf187,
 tf188, tf189, tf190, tf191, no3, unor6, tf193, tf194)

run tf195(tf196, tf197, tf198, tf199, tf200, tf201, tf202, tf203,
 tf204, tf205, tf206, tf207, tf208, tf209, tf210, tf211, tf212,
 tf213, tf214, tf215, no3, unor6, tf216, tf217)

run tf218(tf219, tf220, tf221, tf222, tf223, tf224, tf225, tf226,
 tf227, tf228, tf229, tf230, tf231, tf232, tf233, tf234, tf235, tf236,
 no3, unor6, tf237, tf238)

if tf216 >= 0 then
 tf239 = tf216 + tf237;
 tf240 = tf239 + tf193;
 dddd = tf242;
 tf241 = tf240 / dddd;
 tf243 = tf241 / 8;
 tf244 = tf243 / 5;
 tf245 = tf194 + tf217 + tf238;

if ac = 1 then
 tf243m = tf243 * 40 / whf + whl

if ac = 2 and tf242m > 0 then
 ffm = tf243 * tf242 / tf242m;
run Aa(tf242, tf242m, ffm, glf, glf1, tf243m, af)

if tf243 > 999999.9 then
 tf243 = 999999.9

if tf243m > 999999.9 then
 tf243m = 999999.9

if tf239 > 999999.9 then
 tf239 = 999999.9
if tf240 > 999999.9 then
tf240=999999.9

if tf241 > 999999.9 then
tf241=999999.9

if tf245 > 999999.9 then
tf245=999999.9

if tf244 > 999999.9 then
tf244=999999.9

run tf31(tf246, tf247, tf248, tf249, tf250, tf251, tf252, tf253, tf254
, tf255, tf256, tf257, tf258, tf259, tf260, tf261, tf262, tf263, tf264, tf265, tf282, tf68, no3, unor4, ac, whc, wh3, tf290m, glc, glcl, tf302, tf303, tf304, tf303m)

if tf286>=0 then
tf288=tf286/5

if tf288 > 999999.9 then
tf288=999999.9

run tf289(tf122, tf123, tf124, tf125, tf126, tf127, tf128, tf129, tf130, tf131, tf132, tf290, tf291, tf292, tf293, tf294, tf295, tf296, tf297, tf298, tf299, tf300, tf301, no3, unor4, ac, whc, wh3, tf290m, glc, glcl, tf302, tf303, tf304, tf303m)

if tf303>=0 then
tf305=tf303/5

if tf305 > 999999.9 then
tf305=999999.9

run time_tota13(tf27, tf147, tf241, tf70, tf175, tf285, tf110, tf148, tf302, tf307)

run tf306(tf28, tf71, tf111, tf149, tf150, tf176, tf243, tf286, tf303, tf308)

run tf306(tf30, tf73, tf134, tf154, tf153, tf178, tf244, tf288, tf305, tf309)

run tf310(tf8, tf9, tf10, tf11, tf12, tf13, tf14, tf15, tf16, tf32, tf33, tf34, tf35, tf36, tf37, tf38, tf39, tf40, tf41, tf42, tf43, tf44, tf45, tf46, tf47, tf48, tf49, tf50, tf51, tf312, tf313, tf314, tf315, tf316, tf317, tf318, tf319, tf320, tf321, tf322, tf323, tf324, tf325, tf326, tf327, tf328, tf329, tf330, tf331, tf322, tf323, tf324, tf325, tf326, tf327, tf328, tf329, tf330, tf331, tf332, tf333, tf334, tf335, tf336, tf337, tf338, no3, tf339, tf340)

run tf341(tf136, tf137, tf138, tf139, tf156, tf157, tf158, tf159, tf160, tf161, tf162, tf163, tf164, tf165, tf166, tf167, tf168, tf169, tf170, tf171, tf172, tf173tf342, tf343, tf344, tf345, tf321, tf322, tf323, tf324, tf325, tf326, tf327, tf328, tf329, tf330, tf331, tf332, tf333, tf334, tf335, tf336, tf337, tf338, no3, tf346, tf347)
run tf348(tfl80, tfl81, tfl82, tfl83, tfl84, tfl85, tfl86, tfl87, tfl88, tfl89, tfl90, tfl91, tfl92, tfl93, tfl94, tfl95, tfl96, tfl97, tfl98, tfl99, tf200, tf201, tf202, tf203, tf204, tf205, tf206, tf207, tf208, tf209, tf210, tf211, tf212, tf213, tf214, tf215, tf216, tf217, tf218, tf219, tf220, tf221, tf222, tf223, tf224, tf225, tf226, tf227, tf228, tf229, tf230, tf231, tf232, tf233, tf234, tf235, tf236, tf237, tf238, tf239, tf240, tf241, tf242, tf243, tf244, tf245, tf246, tf247, tf248, tf249, tf250, tf251, tf252, tf253, tf254, tf255, tf256, tf257, tf258, tf259, tf260, tf261, tf262, tf263, tf264, tf265, tf266, tf267, tf268, tf269, tf270, tf271, tf272, tf273, tf274, tf275, tf276, tf277, tf278, tf279, tf280, tf281, tf282, tf283, tf284, tf285, tf286, tf287, tf288, tf289, tf290, tf291, tf292, tf293, tf294, tf295, tf296, tf297, tf298, tf299, tf300, tf301, tf302, tf303, tf304, tf305, tf306, tf307, tf308, tf309, tf310, tf311, tf312, tf313, tf314, tf315, tf316, tf317, tf318, tf319, tf320, tf321, tf322, tf323, tf324, tf325, tf326, tf327, tf328, tf329, tf330, tf331, tf332, tf333, tf334, tf335, tf336, tf337, tf338, tf339, tf340, tf341, tf342, tf343, tf344, tf345, tf346, tf347, tf348, tf349, tf350, tf351, tf352, tf353, tf354, tf355, tf356, tf357, tf358, tf359, tf360, tf361, tf362, tf363, tf364, tf365, tf366, tf367, tf368, tf369)

run tf372(tf29, tf245, tf151, tf72, tf177, tf112, tf304, tf152, tf339, tf369, tf346, tf340, tf371, tf347, tf116, tf133, tf120, wh1, wh2, wh3, tf17, tf242, tf140, tf67, tf282, tf174, tf91, tf290, tf141, tf17m, tf242m, tf140m, tf67m, tf282m, tf174m, tf91m, tf290m, tf141m, glf, glf1, gll, gll, glc, glcl, ac, tf373, tf374, tf375, tf376, tf377, tf378, tf379, tf380, tf381, tf373m, tf374m, tf375m, tf376m, tf377m, tf378m, tf379m, tf380m, tf381m)

run fltco(tf373, tf374, tf375, tf376, tf377, tf378, tf379, tf380, tf381, fltcos)

run fltco(tf373m, tf374m, tf375m, tf376m, tf377m, tf378m, tf379m, tf380m, tf381m, fltcosm)

if _lag_cw1>=0 and _lag_cw2>=0 or _lag_sb1>=0 or _lag_sb2>0 or _lag_sc1>=0 or _lag_sc2>=0 or _lag_sbs1>=0 or _lag_sbs2>=0 then run ftt(tf28, tf71, tf111, tf243, tf286, tf303, tf149, tf176, tf150, _lag_cw1, _lag_cw2, _lag_sb1, _lag_sb2, _lag_sc1, _lag_sc2, _lag_cws1, _lag_sbs1, wallday, slabday, stairday, fdat, fhrt, fwet)

if _lag_cw1m>=0 and _lag_cw2m>=0 or _lag_sb1m>=0 or _lag_sb2m>0 or _lag_sc1m>=0 or _lag_sc2m>=0 or _lag_sbs1m>=0 or _lag_sbs2m>0 then run ftt(tf28m, tf71m, tf111m, tf243m, tf286m, tf303m, tf149m, tf176m, tf150m, _lag_cw1m, _lag_cw2m, _lag_sb1m, _lag_sb2m, _lag_sc1m, _lag_sc2m, _lag_cws1m, _lag_sbs1m, walldaym, slabdaym, stairdaym, fdatm, fhrtm, fwetm)

run con_tyf(tf8, tf9, tf10, tf11, tf12, tf13, tf14, tf15, tf16, tf32, tf33, tf34, tf35, tf36, tf37, tf38, tf39, tf40, tf41, tf42, tf43, tf44, tf45, tf46, tf47, tf48, tf49, tf50, tf51, tf52, tf53, tf54, tf55, tf56, tf57, tf58, tf59, tf60, tf61, tf62, tf63, tf64, tf65, tf66, tf75, tf76, tf77, tf78, tf79, tf80, tf81, tf82, tf83, tf84, tf85, tf86, tf87, tf88, tf89, tf90, tf136, tf137, tf138, tf139, tf118, tf119, tf156, tf157, tf158, tf159, tf160, tf161, tf162, tf163, tf164, tf165, tf166, tf167, tf168, tf169, tf170, tf171, tf172, tf173, tf180, tf1810, tf182, tf183, tf184, tf185, tf186, tf187, tf311, typ)

run con_tyfa(tf17, tf67, tf91, tf140, tf174, tf242, tf282, tf290, tf141, tf196, tf197, tf198, tf199, tf200, tf201, tf202, tf203, tf204,
run cost_typ(tf18,tf19,tf20,tf21,tf22,tf23,tf24,tf25,tf26,tf28,tf69,tf92,tf93,tf94,tf95,tf96,tf97,tf98,tf99,tf100,tf101,tf102,tf103,tf105,tf106,tf107,tf114,tf115,tf142,tf143,tf144,tf145,tf146,tf188,tf189,tf190,tf191,tf192,tf208,tf209,tf210,tf211,tf212,tf213,tf214,tf215,tf230,tf231,tf232,tf233,tf234,tf235,tf236,tf291,tf292,tf293,tf294,tf295,tf296,tf297,tf298,tf299,tf300,tf312,tf313,tf314,tf315,tf316,fltcos,ctyp)

run cost_typa(tf354,tf355,tf356,tf357,tf358,tf359,tf360,tf361,tf362,tf363,tf364,tf365,tf366,tf367,tf368,tf317,tf318,tf319,tf320,tf321,tf322,tf323,tf324,tf325,tf326,tf327,tf328,tf329,tf330,tf331,tf332,tf333,tf334,tf335,tf336,tf337,tf338,tf342,tf343,tf344,tf345,tf346,tf347,tf349,tf350,tf351,tf352,tf353,tf104,ctypa)

run num3(no3,noo3)

run gratyf(tf30,tf244,tf154,tf73,tf288,tf178,tf134,tf305,tf153,grtyf)

run gratyf2(lag_cw1,lag_cw2,lag_sbl,lag_scl1,lag_sc2,lag_cwsbl,lag_sbsl,grtyf2)

run nstore(new_project,newww)
if st3 is '(5)' then
use screen_final3
if st3 is '(4)' or st3 is '(6)' then
use screen_optf1
run co_opt(fltcos,fdat,tf373,tf374,tf375,tf376,tf377,tf378,tf379,tf380,tf381,tf28,tf149,tf243,tf71,tf176,tf286,tf111,tf150,tf303,tf373m,tf374m,tf375m,tf376m,tf377m,tf378m,tf379m,tf380m,tf381m,tf28m,tf149m,tf243m,tf71m,tf176m,tf286m,tf111m,tf150m,tf303m,fltcosm,fdatm,tf17m,tf140m,tf242m,tf67m,tf174m,tf282m,tf91m,tf141m,tf290m,fltcoos)
run co_optf(wallday,slabday,stairday,walldaym,slabdaym,stairdaym,fdat,fdatm,fltcos,fltcosm,tf381,tf381m,floopt)

runora(unor1, unor2, unor3, unor4, unor5,unor6,unor7,unor8,unor9,whf,whr,whc,whlf,whlr,whcl,glf,glr,glc,glfl,glrl, glc1, unor)

if st3 is not '(8)' and
lag_cw1>=0 and
lag_cw2>=0 and
lag_sbl>=0 and
lag_sbl2>=0 and
lag_scl>=0 and
lag_sc2>=0 and
lag_cwsb1>=0 and
lag_sbsl>=0 then
run floor_return()
run dummy2(new_project)
run nstorel(new_project,newl)
run ty_escape()

'ENVELOPE'

seek enn
use screen_en
run enc(en,enl)
run esc()

'EXTERNAL BRICKWORK/BLOCKWORK'

seek block_brick
control common
run con_bbo2(bbof)
run con_bbof2(mur)
run cost_bb2(cbbof)
run co_opt2(bctoot)
run noooob3(nob3)
run ntore2(new2)
if new2 is 'y' then
run conbbo(b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b27, b28, b29, b30,b31,b32,b33,b34,b44,b45,b46,b47,b48,b49,b50,b51,b52, b53, b54,b55,b56,b57,b58,b59,b60,b61,b67,b76,b77,b78,b80,b81, b82, b83,b84,b85,b86,b87,b88,b89,b90,b91,b92, b93, b94, b95, b111, b112,b113,b114,b115,b116,b117,b118,b119,b120,b136,b137, b138, b139,b140,b141,b142,b143,b144,b145,b159,b167,nb3,b159m,b167m, b217m,b219m,b161m,b169m,bf136,bf137,bf144,bf207,bf146,bf211, bf150,bf209,bf147,bctotm);
b173m=b161m
use screen_4st
if st4 is '(1)' then
 use screen_41;
 ac=3

if st4 is '(2)' then
 use screen_41c;
 ac=3

if st4 is '(3)' then
 use screen_gangsize4;
 ac=3

if st4 is '(5)' then
 use screen_ac

if st4 is '(6)' then
 use screen_oub;
 ac=3

if st4 is '(7)' then
 ac=3;
 run st_return

if st4 is '(4)' then
 ac=3

if ac=1 then
 use screen_ov;

if ac=2 then
 use screen_gangsize4;
 use screen_lab

if ac<>1 and
ac<>2 then
 ac=3

run b5(b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b16,b17, b18, b19, b20, b21, ebloc,b22,b23,b24,b25)

run b26(b27,b28,b29,b30,b31,b32,b33, b34, b35, b36, b37, b38, b21,ebloc,b39,b40,b41,b42)

run b43(b44,b45,b46,b47,b48,b49,b50,b51,b52,b53,b54,b55, b56, b57,b58,b59,b60,b61,b62,b63,b64,b65,b66,b67,b68,b69,b70, b21, ebloc,b71,b72,b73,b74)

run b75(b76,b77,b78,b79,b80,b81,b82,b83,b84,b85,b86, b87,b88, b89, b90,b91,b92,b93,b94,b95,b96,b97,b98,b99,b100, b101,b102, b103,b104,b105,b21,ebloc,b106,b107,b108,b109)

run b110(b111,b112,b113,b114,b115,b116,b117,b118, b119, b120, b121,b122,b123,b124,b125,b126,b127,b128,b129,b130,ebloc,b131, b132,b133,b134)

run b135(b136,b137,b138,b139,b140,b141,b142,b143, b144, b145, b146,b147,b148,b149,b150,b151,b152,bf136,bf137,bf144,bf146,
bf147,bf150,eb, b153,b154,b155,b156)

if b131 >=0 then
b157=b22+b39+b71;
b158=b157+b131

if b159=0 then
b160=0;
b161=0;
b162=0
if b159m=0 then
b161m=0

if b159>0 then
nb3160=nb3*b159;
b160=b158/nb3160;
b161=b160/8;
b165=b24+b41+b73;
b166=b165+b108+b133;
b162=b166/nb3160

if ac=1 and b159>0 then
whl=whll*whbl/100-0.40*whll;
b161m=b158/b159/8/nb3*40/whbl+whl

if ac=2 then
ffml=b158/b159/8/nb3;
run Aa(b159m,b159,ffml,glfl,glll,b161m,ral)

if b167=0 then
b168=0;
b169=0;
b170=0
if b167m=0 then
b169m=0

if b167>0 then
nb3168=nb3*b167;
b168=b153/nb3168;
b169=b154/nb3168;
b170=b155/nb3168

if ac=1 and b167>0 then
wh2=whlr*whbr/100-0.40*whlr;
b169m=b153/b167/8/nb3*40/whbr+wh2

if ac=2 then
ffm2=b153/b167/8/nb3;
run Aa(b167m,b167,ffm2,glfr,glrl,b169m,ra2)

if b160<b168 then
b171=b168;
b172=b169;
b173=b170
if b160>=b168 then
b171=b160;
\begin{verbatim}
b172=b161;
b173=b162

if b161m>b169m then
b173m=b161m

if b161m<=b169m then
b173m=b169m

if b171 > 9999.9 then
b171=9999.9

if b160> 9999.9 then
b160=9999.9

if b161> 9999.9 then
b161=9999.9

if b162> 9999.9 then
b162=9999.9

if b168> 9999.9 then
b168=9999.9

if b169> 9999.9 then
b169=9999.9

if b170> 9999.9 then
b170=9999.9

if b161m> 9999.9 then
b161m=9999.9

if b169m> 9999.9 then
b169m=9999.9

if b172> 99999.9 then
b172=99999.9

if b173m> 99999.9 then
b173m=99999.9

run b174 (b6,b7,b8,b9,b10,b11,b12,b13,b14,b15,b27,b28,b29,b30,
b31,b32,b33,b34,b44,b45,b46,b47,b48,b49,b50,b51,b52,b53,b175,
b176,b177,b178,b179,b180,b181,b182,b183,b184,b185,b186 ,b187,
b188,b189,b190)

run b174 (b54,b55,b56,b57,b58,b59,b60,b61,b76,b77,b78,b79,b80,
b81,b82,b83,b84,b85,b86,b87,b88,b89,b90,b91,b92,b93,b94, b95,
b191,b192,b193,b194,b195,b196,b197,b198,b199,b200,b201, b202,
b203,b204,b189,b205)

run b206 (b136,b137,b138,b139,b140,b141,b142,b143, b144, b145,
b207,b208,b209,b210,b211,b212,b152,bf136,bf207, bf144, bf211,
bf137,bf209,b213)

run b214 (b190,b205,b215)
\end{verbatim}
'INTERNAL BRICKWORK/BLOCKWORK'

seek block_brick

control common

run con_bbo2(ibbof)
run con_bbof2(imur)
run cost_bb2(icbbof)
run co_opt2(ibctoot)
run noooob3(nob3)
run nstore2(new2)

if new2 is 'y' then
 run conbbo(ib6,ib7,ib8,ib9,ib10,ib11,ib12,ib13,ib14,ib15,ib27,ib28,ib29,ib30,ib31,ib32,ib33,ib34,ib44,ib45,ib46,ib47,ib48,ib49,ib50,ib51,ib52,ib53,ib54,ib55,ib56,ib57,ib58,ib59,ib60,ib61,ib76,ib77,ib78,ib79,ib80,ib81,ib82,ib83,ib84,ib85,ib86,ib87,ib88,ib89,ib90,ib91,ib92,ib93,ib94,ib95,ib111,ib112,ib113,ib114,ib115,ib116,ib117,ib118,ib119,ib120,ib136,ib137,ib138,ib139,ib140,ib141,ib142,ib143,ib144,ib145,ib159,ib167,nb3,ib159m,ib167m,ib217m,ib219m,ib161m,ib169m,ibf136,ibf137,ibf144,ibf207,ibf146,ibf211,ibf150,ibf209,ibf147,ibctotm);
 ib173m=ib161m

use screen_4st

if st4 is '(1)' then
 use screen_41;
 ac=3

if st4 is '(2)' then
 use screen_41c;
 ac=3

if st4 is '(3)' then
 use screen_gangsize4;
 ac=3

if st4 is '(5)' then
 use screen_ac;

if st4 is '(6)' then
 use screen_oub;
 ac=3

if st4 is '(7)' then
 ac=3;
 run st_return()

if ac =1 then
 use screen_ov
if ac=2 then
use screen_gangsize4;
use screen_lab

if st4 is ' (4) ' then
ac=3

run b5 (ib6, ib7, ib8, ib9, ib10, ib11, ib12, ib13, ib14, ib15, ib16, ib17, ib18, ib19, ib20, ib21, ibloc, ib22, ib23, ib24, ib25)

run b26 (ib27, ib28, ib29, ib30, ib31, ib32, ib33, ib34, ib35, ib36, ib37, ib38, ib39, ib40, ib41, ib42)

run b43 (ib44, ib45, ib46, ib47, ib48, ib49, ib50, ib51, ib52, ib53, ib54, ib55, ib56, ib57, ib58, ib59, ib60, ib61, ib62, ib63, ib64, ib65, ib66, ib67, ib68, ib69, ib70, ib71, ib72, ib73, ib74)

run b75 (ib76, ib77, ib78, ib79, ib80, ib81, ib82, ib83, ib84, ib85, ib86, ib87, ib88, ib89, ib90, ib91, ib92, ib93, ib94, ib95, ib96, ib97, ib98, ib99, ib100, ib101, ib102, ib103, ib104, ib105, ib21, ib106, ib107, ib108, ib109)

run b110 (ib111, ib112, ib113, ib114, ib115, ib116, ib117, ib118, ib119, ib120, ib121, ib122, ib123, ib124, ib125, ib126, ib127, ib128, ib129, ib130, ibloc, ib131, ib132, ib133, ib134)

run b135 (ib136, ib137, ib138, ib139, ib140, ib141, ib142, ib143, ib144, ib145, ib146, ib147, ib148, ib149, ib150, ib151, ib152, ibf136, ibf137, ibf144, ibf146, ibf147, ibf150, ibric, ib153, ib154, ib155, ib156)

if ib131 >=0 then
ib157=ib22+ib39+ib71;
ib158=ib157+ib131

if ib159=0 then
ib160=0;
ib161=0;
ib162=0

if ib159m=0 then
ib161m=0

if ib159>0 then
inb3160=nb3*ib159;
ib160=ib158/inb3160;
ib161=ib160/8;
ib165=ib24+ib41+ib73;
ib166=ib165+ib108+ib133;
ib162=ib166/inb3160

if ac=1 and ib159>0 then
wh1=wh11*whbl/100-0.4*wh11;
ib161m=ib158/ib159/8/nb3*40/whbl+wh1

if ac =2 then
ffml=ib158/ib159m/8/nb3;
run Aa(ib159m,ib159,ffml,glfl,gl11,ib161m,ra1)

if ib167=0 then
 ib168=0;
 ib169=0;
 ib170=0

if ib167m=0 then
 ib169m=0

if ib167>0 then
 inb3168=nb3*ib167;
 ib168=ib153/inb3168;
 ib169=ib154/inb3168;
 ib170=ib155/inb3168

if ac=1 and ib167>0 then
 wh2=whlr+whbr/100-0.4*whlr;
 ib169m=ib153/ib167/8/nb3*40/whbr+wh2

if ac=2 then
 ffm2=ib153/ib167m/8/nb3;
run Aa(ib167m,ib167,ffm2,glfr,glr1,ib169m,ra2)

if ib160<ib168 then
 ib171=ib168;
 ib172=ib169;
 ib173=ib170

if ib160>=ib168 then
 ib171=ib160;
 ib172=ib161;
 ib173=ib162

if ib161m>ib169m then
 ib173m=ib161m

if ib161m<=ib169m then
 ib173m=ib169m

if ib171 > 9999.9 then
 ib171=9999.9

if ib160> 9999.9 then
 ib160=9999.9

if ib161> 9999.9 then
 ib161=9999.9

if ib162> 9999.9 then
 ib162=9999.9

if ib168> 9999.9 then
 ib168=9999.9

if ib169> 9999.9 then

A13-31
ib169 = 9999.9

if ib170 > 9999.9 then
ib170 = 9999.9

if ib161m > 9999.9 then
ib161m = 9999.9

if ib169m > 9999.9 then
ib169m = 9999.9

if ib172 > 99999.9 then
ib172 = 99999.9

if ib173m > 99999.9 then
ib173m = 99999.9

run b174 (ib6, ib7, ib8, ib9, ib10, ib11, ib12, ib13, ib14, ib15, ib27, iv28, ib29, ib30, ib31, ib32, ib33, ib34, ib44, ib45, ib46, ib47, ib48, ib49, ib50, ib51, ib52, ib53, ib175, ib176, ib177, ib178, ib179, ib180, ib181, ib182, ib183, ib184, ib185, ib186, ib187, ib188, ib189, ib190)

run b206 (ib136, ib137, ib138, ib139, ib140, ib141, ib142, ib143, ib144, ib145, ib207, ib208, ib209, ib210, ib211, ib212, ib152, ibf136, ibf207, ibf144, ibf211, ibf213)

run b214 (ib190, ib205, ib215)

run b216 (ib215, ib25, ib42, ib74, ib109, ib134, nb3, ac, wh1, ib159m, ib159, glfl, gl11, ib217, ib217m)

run b218 (ib213, ib156, nb3, ac, wh2, ib167m, ib167, glfr, glr1, ib219, ib219m)

run bcctot (ib217, ib219, ibctot)

run bcctot (ib217m, ib219m, ibctotm)

run con_bbo (ib6, ib7, ib8, ib9, ib10, ib11, ib12, ib13, ib14, ib15, ib27, ib28, ib29, ib30, ib31, ib32, ib33, ib34, ib44, ib45, ib46, ib47, ib48, ib49, ib50, ib51, ib52, ib53, ib54, ib55, ib56, ib57, ib58, ib59, ib60, ib61, ib76, ib77, ib78, ib79, ib80, ib81, ib82, ib83, ib84, ib85, ib86, ib87, ib88, ib89, ib90, ib91, ib92, ib93, ib94, ib95, ib191, ib192, ib193, ib194, ib195, ib196, ib197, ib198, ib199, ib200, ib201, ib202, ib203, ib204, ib189, nb3, ib205)

run cost_bb (ib16, ib17, ib18, ib19, ib20, ib21, ib35, ib36, ib37, ib38, ib62, ib63, ib64, ib65, ib66, ib67, ib68, ib69, ib70, ib96, ib97, ib98, ib99, ib100, ib101, ib102, ib103, ib104, ib105, ib121, ib122, ib123, ib124, ib125, ib126, ib127, ib128, ib129, ib130, ib146, ib147,
run btt(ib160,ib168,ib161,ib169,ib162,ib160,ibhrt,ibwet)
run co_opt(ibctot,ib172,ibctotm,ib173m,ib159m,ib167m,ib217,ib219,ib161,ib169,ib217m,ib161m,ib169m,ibloc,ibr1c,whbr,whbl,whlr,whll,glfr,glfl,glrl,gl11,ibctoot)
run conbbbof(ibf136,ibf137,ibf144,ibf207,ibf146,ibf211,ibf150,ibf209,ibf147,imur)
run grabb(ib162,ib170,grabbbi)
rundummy2(newi22)
if st4 is '(1)' or
st4 is '(2)' or
st4 is '(3)' then
run bbloc_return()

if st4 is '(5)' then
use screen_optbb;
run bbloc_return()

if st4 is '(4)' then
use screen_final4;
run bbloc_return()
run dummy2(new_project)
run nstore2(new_project,new2)
run bb_escape()

'FINISHES'
seek finis
run fin2(fif)
use screen_f1
run fin(fii2,fiw2,fic2,fie2,fie1,fiw1, fif1, fic1, fie1, fii2m,fiw2m, fie2m, fic2m, fie2m, fiilm, fiwlm, fif1m, fic1m, fie1m, fif)
run st_return
run fin_esc()
'SERVICES'
seek servs
run fin2(ser)
use screen_f1
run fin(se12,sem2,see2,se1, sem1, see1, sel2m, sem2m, see2m, sellm,sem1m, see1m, ser)
run st_return()
run fin_esc()

'ROOF ASPHALT'
seek roofa
run ra2(raa)
use screen_r1
use screen_ac
if ac =1 then
glfr=0;
glrl=0;
use screen_ov
if ac=2 then
whbr=0;
whlr=0;
use screen_lab
run cot(laq1,laq2, laq3, ulc1, ulc2, ulc3, umc1, umc2, umc3, gs, rnor, ac, whbr, whlr, glfr, glrl, gsm, costra, durra, costram, durram)
if durra>=0 then
dayra=durra/8;
weekra=dayra/5
if durra>=999999.9 then
durra=999999.9
if dayra>=999999.9 then
dayra=999999.9
if weekra>=999999.9 then
weekra=999999.9
if costra>=999999.9 then
costra=999999.9
if durram>=0 then
dayram = durram / 8;
weekram = dayram / 5

if durram >= 999999.9 then
durram = 999999.9

if dayram >= 999999.9 then
dayram = 999999.9

if weekram >= 999999.9 then
weekram = 999999.9

if costram >= 999999.9 then
costram = 999999.9

use screen_finalra

run ra(costra, dayra, costram, dayram, weekra, durra, laq1, laq2, laq3, ulc1, ulc2, ulc3, umc1, umc2, umc3, gs, rnor, gsm, whbr, whlr, glfr, glrl, raa)
run ragr(weekra, ragraf)
run ra_escape()

'INDIRECT COSTS'
seek ic
run coo2(iic)
use screen_ic
run co(ic1, ic2, ic3, ic4, ic5, ic6, ic7, ic8, ic9, icc)
run coo(icc, ic1, ic2, ic3, ic4, ic5, ic6, ic7, ic8, ic9, iic)
run st_return()
run es_c()

LAG VALUES'
seek main_lag
run lag_mains2(lagmain)
run lag_mains2m(lagmainm)
use screen_d
use screen_exc_lap
use screen_ty_lap
run num3a(noo3)
run coo2(iic)

if lt_lr >=0 or lr_lb>=0 or lr_lbl>=0 or lag_sifo>=0 or f1_f2>=0 or f2_f3>=0 or lag_laro>=0 or lag_cw2>=0 or lag_cwl>=0 or lag_sb1>=0 or lag_sb2>=0 or lag_scl>=0 or lb_lt>=0 or lt_lc>=0 or lag_sbs1>=0 or b173m>=0 or tf381>0 or dayra>=0 or lr_lbm>=0 or lr_lbm>=0 or lag_sifom>=0 or f1_f2m>=0 or f2_f3m>=0 or lag_larom>=0 or lag_sclm>=0 or lb_ltm>=0 or lt_lcm>=0 or lag_sbs1m>=0 or lr_lbm>=0 or lag_fogrm>=0 or lag_grfirm>=0 or lag_ram>=0 or lag_cwsblm>=0 or lag_cwsblm>=0 or lag_sc2m >=0 then
run durl1(lt_lr,lr_lb,lr_lbl,lag_sifo, f1_f2, f2_f3, lag_fogrm, lag_grfirm,lag_cwsbl,lag_cw2,lag_cwl,lag_sb1, lag_sb2, lag_ra, dayra, no3, dayl)

if lt_lrm >=0 or lr_lbm>=0 or lr_lbm>=0 or lag_sifom>=0 or f1_f2m>=0 or f2_f3m>=0 or lag_larom>=0 or lag_sclm>=0 or lb_ltm>=0 or lt_lcm>=0 or lag_sbs1m>=0 or lr_lbm>=0 or lag_fogrm>=0 or lag_grfirm>=0 or lag_ram>=0 or lag_cwsblm>=0 or lag_sc2m >=0 then
emel=0

if sdat>=0 or walldaym >=0 or lag_cwsbl>=0 or wallday >=0 or slabday>=0 or stairday>=0 or
run num3a(noo3)

run coo2(iic)

if lt_lr >=0 or
lt_lb>=0 or
lt_lbl>=0 or
lag_sifo>=0 or
f1_f2>=0 or
f2_f3>=0 or
lag_laro>=0 or
lag_cw2>=0 or
lag_cw1>=0 or
lag_sbl1>=0 or
lag_sbl2>=0 or
lag_scl>=0 or
lb_lt>=0 or
lt_lc>=0 or
lag_sbs1>=0 or
b173m>=0 or
tf381>0 or
dayra>=0 or
lr_lb1>=0 or
lag_fogr>=0 or
lag_grfir>=0 or
lag_ra>=0 or
lag_cwslb1>=0 or
no3>=0 then
run durl(lt_lr,lr_lb,lr_lbl,lag_sifo, f1_f2, f2_f3, lag_fogr,
lag_grfir,lag_cwslb1,lag_cw2,lag_cw1,lag_sbl, lag_sb2, lag_ra,
dayra, no3, dayl)

if lt_lrm >=0 or
lr_lbm>=0 or
lr_lbm>=0 or
lag_sifom>=0 or
f1_f2m>=0 or
f2_f3m>=0 or
lag_larom>=0 or
lag_sclm>=0 or
lb_ltm>=0 or
lt_lcm>=0 or
lag_sbs1m>=0 or
lr_lbm>=0 or
lag_fogrm>=0 or
lag_grfirm>=0 or
lag_ram>=0 or
lag_cwsblm>=0 or
lag_sclm>=0 or
no3>=0 then
emel=0

if sdat>=0 or
walldaym >=0 or
lag_cwslm >=0 or
wallday >=0 or
slabday>=0 or
stairday>=0 or
num3a(noo3)
num3a(noo3)
laflm>=0 or
lacem>=0 or
lalexm>=0 or
lalim>=0 or
lamem>=0 or
laelm>=0 or
fi2m>=0 or
fiw2m>=0 or
fig2m>=0 or
fic2m>=0 or
fie2m>=0 or
sel2m>=0 or
sem2m>=0 or
see2m>=0 then
run dur3(lt_lrm, lr_lbm, lr_lbm, lag_sifom, fl_f2m, f2_f3m,
lag_fogrm, lag_grfirm, lag_cwsblm, lag_nfbbm, nolm, lamn,
lawam, laflm, lacem, lalexm, lalim, lamem, laelm, fii2m, fiw2m, fig2m, fic2m,
fie2m, sel2m, sem2m, see2m, lag_cw2m, lag_cw1m, lag_sb1m, lag_sb2m,
day3m, d1m, d2m, d3m, d4m, d5m, d6m, d7m, d8m)

run tot_dur(day1, day2, day3, day1m, day2m, day3m, day, daym)

if fiil>=0 or
fiwl>=0 or
fifl>=0 or
ficl>=0 or
fiel>=0 or
sell>=0 or
sem1>=0 or
seel>=0 or
sitotc>=0 or
cofotot>=0 or
costra>=0 or
fltcos>=0 or
ibctot>=0 or
bctot>=0 then
run tot_cost(fii1, fiw1, fif1, ficl, fiel, sell, sem1, seel, sitotc,
cofotot, costra, no3, fltcos, ibctot, bctot, dir)

if fiilm>=0 or
fiwl>=0 or
fiflm>=0 or
ficl>=0 or
fielm>=0 or
sell>=0 or
seml>=0 or
seelm>=0 or
sitotcm>=0 or
cofototm>=0 or
costram>=0 or
fltcosm>=0 or
ibctotm>=0 or
bctotm>=0 then
run tot_cost(fii1m, fiwl, fif1m, ficl, fiel, sellm, sem1m, seelm, sitotcm,
cofototm, costram, no3, fltcosm, ibctotm, bctotm, dirm)
if icc>=0 then
run ind_tot(icc, day, daym, dir, dirm, iccm, tot, totm)

use screen_tot

run co_opt (day, daym, dir, dirm, icc, iccm, tot, totm, day1, day2, day3, day1m, day2m, day3m, d1, d2, d3, d4, d5, d6, d7, d8, d1m, d2m, d3m, d4m, d5m, d6m, d7m, d8m, tott)

run tot_es
DECLARE SUB plp12g (gxxe(), gxx1(), gyye(), gyy1(),
gzee(), gzz1(), i!, a!)
DECLARE SUB p2p22 (gxxe(), gxxei(), nof!, nof1!, page!,
qxxe(), qxx!(), gyye(), gyy()!, qze()!, gzz1()!, i!, a!)
DECLARE SUB plp10 (glxxe, glxx1!, glyye!, gyy1!, glzz1!,
glzzl!, gltte!, gltt1!, gluuue!, gluuu!, g22b!, g22b1!,
g2xxe!, g2xx1!, g2yye!, g2yy1!, g2zz1!, gzzze!, g2zzl!, gyye()!,
gyy1!(), gxxe()!, gxx1!)}
DECLARE SUB plp10e (xxe, xx!, yye!, YY!, zze!, zz!, tte!,
tt!, uue!, uu!, xxe2!, xxx2!, xx2!, yxe2!, yy2!,
zzze!, zze2!, qyye()!, qyy1!()!, qxxe()!, qxx1!)}
DECLARE SUB ngigi (finl, FIN2!, fin3!, fin4!, fin5!, fin6!,
fin7!, fin8!, fin9!, fin10!, ser1!, ser2!, ser3!, ser4!,
ser5!, ser6!, afin1()!, afin2()!, afin3()!, afin4()!,
afin5()!, afin6()!, afin7()!, afin8()!, afin9()!, afin10()!,
ser1()!, ser2()!, ser3()!, ser4()!, ser5()!, ser6()!,
t!, jf1!, jf3!, jf5!, jf9!, js1!, js3!, js5!, gig!,
nofloor!)
DECLARE SUB keyin (MINKEYO/ MAXKEY!(), EXTMINKEY!(),
EXTMKEY!(), SPECIALKEY$(), EXTSPECIALKEY$, CAPSON!,
CALLER!, XFLD!, YFLD!, LENGTH!, TRUE!, FALSE!, c$)
DECLARE SUB sf (afin1()!, afin2()!, afin3()!, afin4()!,
afin5()!, afin6()!, afin7()!, afin8()!, afin9()!, afin10()!,
ser1()!, ser2()!, ser3()!, ser4()!, ser5()!, ser6()!,
t!, jf1!, jf3!, jf5!, jf9!, js1!, js3!, js5!, gig!,
nofloor!)
DECLARE SUB sff (gxxeO, gxxl!(), fin1!, FIN2!, fin3!,
fin4!, fin5!, fin6!, fin7!, fin8!, fin9!, fin10!, ser1!,
ser2!, ser3!, ser4!, ser5!, ser6!, afin1()!, afin2()!, afin3()!,
afin4()!, afin5()!, afin6()!, afin7()!, afin8()!, afin9()!, afin10()!,
ser1()!, ser2()!, ser3()!, ser4!(), ser5()!, ser6()!,
t!, jf1!, jf3!, jf5!, jf9!, js1!, js3!, js5!, gig!)
DECLARE SUB AL (c$, page, oh, op, i, nof, gig!,
gxxe!(),
gxxeO, gxxle!()!, fin1!, FIN2!, fin3!,
fin4!, fin5!, fin6!, fin7!, fin8!, fin9!, fin10!, ser1!,
ser2!, ser3!, ser4!, ser5!, ser6!, afin1()!, afin2()!, afin3()!,
afin4()!, afin5()!, afin6()!, afin7()!, afin8()!, afin9()!, afin10()!,
ser1()!, ser2()!, ser3()!, ser4!(), ser5()!, ser6()!,
t!, jf1!, jf3!, jf5!, jf9!, js1!, js3!, js5!, gig!)
pope = 1
op = 0
oh = 0
cc = 0

OPEN "graph1.dat" FOR INPUT AS #1
INPUT #1, glw1, glw2, glw3, glw4, glw5, glw6
OPEN "nooo.dat" FOR INPUT AS #2
INPUT #2, nofloor
OPEN "lagmaind.dat" FOR INPUT AS #3
INPUT #3, glf12, glf23, glf34, glf45, g2f12, g2f23, lag1,
lag2, lag3, g3111, g3112, g3112, g3121, g3122, g3131,
g3132, lag4, lag5, lag6, nof, nofl, lagn, lagra, lain, lawa,
lafl, laex, lali, lame, lael
OPEN "graph2.dat" FOR INPUT AS #4
INPUT #4, g2w1, g2w2, g2w3, dum1, dum2, g2w11
OPEN "graph3.dat" FOR INPUT AS #5
INPUT #5, g3f1, g3r1, g3c1, g3f2, g3r2, g3c2, g3f3, g3r3,
g3c3
OPEN "graph4.dat" FOR INPUT AS #6
INPUT #6, g4w1, g4w2
OPEN "graphi4.dat" FOR INPUT AS #8
INPUT #8, g4w1, g4w2
OPEN "graphra.dat" FOR INPUT AS #9
INPUT #9, gra
OPEN "du.dat" FOR INPUT AS #10
INPUT #10, dul, du2, yl, y2
OPEN "graphfi.dat" FOR INPUT AS #11
INPUT #11, ifi, wfi, ffi, cfi, efi
OPEN "graphs.dat" FOR INPUT AS #12
INPUT #12, lise, mese, elese
OPEN "bar.dat" FOR INPUT AS #13
INPUT #13, bar

YY = nofloor / 2
ww = INT(YY)
gig = nof + 2
gigl = nofl + 2

IF yl = 1 AND y2 = 2 THEN
yi = dul
ye = du2
ELSEIF y2 = 1 AND y1 = 2 THEN
yi = du2
ye = dul
ELSEIF y2 = 1 AND yl = 1 THEN
yi = du2 + dul
ELSEIF y2 = 2 AND yl = 2 THEN
ye = du2 + dul
END IF

gl1a = (glw1 + glw2) * 40
gl1b = (glw3) * 40
gl1c = (glw4 + glw5 + glw6) * 40

g2a = g2w1 * 40
g2b = g2w2 * 40
g2c = g2w3 * 40
g2a1 = g2wl1 * 40
gras = gra * 40
gras1 = gras

lag11 = lag1 * 8
lag22 = lag2 * 8
lag33 = lag3 * 8

lag22 = 0
' lag44 = lag4 * 8 no use so I put it like that '

lag55 = lag5 * 8
lag5i = lag1 * 8
lagnn = lagn * 8
lagras = lagra * 8
lain = lain * 8
lawa = lawa * 8
laf1 = laf1 * 8
lace = lace * 8
laex = laex * 8
lali = lali * 8
lame = lame * 8
lael = lael * 8

'*********SITE SET UP***********

glyy = glf12 * 8
glzz = (glf12 + glf23) * 8
gltt = (glf12 + glf23 + glf34) * 8
gluu = (glf12 + glf23 + glf34 + glf45) * 8

gl1(1) = glyy
gl1(2) = glzz
gl1(3) = gltt
gl1(4) = gluu

glmini = 0
FOR i = 1 TO 4
glmi = glmini - gl1(i)
IF glmi <= 0 THEN
 glmin = glmini
ELSE
 glmin = gl1(i)
END IF
NEXT

glxxe = -glmin
glxx1 = glxxe + gla
glyye = glyy - glmin
glyyl = glyye + glb
glzze = glzze - glmin
glzz1 = glzze + g1c
gltte = gltt - glmin
glttl = gltte + gld
gluue = gluue - glmin
gluul = gluue + glw9 * 40
'************* FOUNDATIONS ******************
g22b = g1zze + lagnn
g22b1 = g22b + g2a1

g2xxe = g22b + lagll

g2xxl = g2xxe + g2a

g2yye = g2xxe + g2f12 * 8
IF g2yye > g2xxl THEN
 g2yye = g2xxl
END IF

g2yy1 = g2yye + g2b

g2zze = g2yye + 8 * g2f23
IF g2zze > g2yy1 THEN
 g2zze = g2yy1
END IF

g2zzl = g2zze + g2c

'************* GROUND FLOOR ******************
DIM gxxe(50), gxxl(50), gyye(50), gyyl(50), gzze(50),
gzzl(50), gxxee(50), gxxle(50)
DIM axee(50), axx(50), qxxe(50), qxx(50), qyye(50), qyy(50),
qzze(50), qzz(50), axee1(50), axxi(50), gxxeei(50),
gxxlei(50)
DIM qx1(50), qyy1(50), qzl1(50), afin1(50), afin2(50),
afin3(50), afin4(50), afin5(50), afin6(50), afin7(50),
afin8(50), afin9(50), afin10(50), aser1(50), aser2(50),
aser3(50), aser4(50), aser5(50), aser6(50), z%(50)

'ground slab'
g2tte = 0

gyye(44) = g2zze + lag22 + lag33
IF gyye(44) > g2zzl THEN
 gyye(44) = g2zzl
END IF

gyy1(44) = gyye(44) + 40 * (g3c2) + 40 / 5 * (g3121 + g3122)
gxxe(4) = gyye(44) + g3111 * 40 / 5

gxxl(4) = gxxe(4) + 40 * (g3c1) + 40 / 5 * (g3111 + g3112)
gyye(4) = gxxe(4) + g3111 * 40 / 5

gyy1(4) = gyye(4) + 40 * (g3c2) + 40 / 5 * (g3121 + g3122)
gzzl(4) = gyye(4) + g3112 * 40 / 5

gzze(4) = gzzl(4) + 40 * (g3c3) + 40 / 5 * (g3131 + g3132)

IF nof = 1 THEN
 gxxee(4) = gxxe(4) + lag55
IF ye > (g4wl + g4w2) THEN
 gxxle(4) = gxxee(4) + 40 * ye
ELSE
 gxxle(4) = gxxee(4) + 40 * (g4wl + g4w2) * nofloor
END IF
fin6 = fin5 + 40 * ffi
fin7 = gxxee(4) + lace
fin8 = fin7 + 40 * cfi
fin9 = gxxee(4) + laex
fin10 = fin9 + 40 * efi
ser1 = gxxee(4) + lali
ser2 = ser1 + 40 * lise
ser3 = gxxee(4) + lame
ser4 = ser3 + 40 * mese
ser5 = gxxee(4) + lael
ser6 = ser5 + 40 * elese
END IF
IF i = nofl + 3 THEN
gxxeei(4) = gzze(i) + lag5i
IF yi > (g4wi1 + g4wi2) THEN
gxxle1i(4) = gxxeei(4) + 40 * yi
ELSE
 gxxle1i(4) = gxxeei(4) + 40 * (g4wi1 + g4wi2) * nofloor
END IF
END IF
NEXT

'***************SCROLLING LEFT/RIGHT/UP/DOWN***************'
MINKEY(3) = 0: MAXKEY(3) = 0: EXTMINKEY(3) = 0:
 EXTMAXKEY(3) = 0 EXTspecialkey$(3) = chr$(69) + chr$(72) +
 chr$(75) + chr$(80) + chr$(77)
TRUE = -1: FALSE = 0: capson(3) = true: caller = 3:
specialkey$(3) = chr$(27)
SCREEN 12
WIDTH 80, 60
page = 1
a = 1
page1 = 0
t = 0
/\t = 0
'new'
tuf = 0

110 VIEW (0, 0)-(621, 479): cls 1
LOCATE 2, 1
PRINT , tab(80); "weeks"
COLOR 12
LOCATE 5, 1
PRINT , tab(80); "SUBSTRUCTURE";
COLOR 15
LOCATE 9, 1
COLOR 3
PRINT "1";
COLOR 15
PRINT " Excavate"; tab(480); " Topsoil ";
LOCATE 13, 1
COLOR 3
PRINT "2";
COLOR 15
PRINT " Reduce "; tab(480); " Level ";
10 IF page < 0 OR PAGE1 < 0 OR t < 0 THEN
GOTO 10000
END IF
VIEW (100, 30)-(621, 479): CLS 1
LINE (0, 0)-(522, 0)
LINE (0, 432)-(522, 432)
IF bar = 1 THEN
FOR i = 0 TO 520 STEP 40
LINE (i, 0)-(i + 1, 432), , BF
NEXT
END IF
IF page = 1 AND PAGE1 = 0 THEN
11 CALL plp10(glxxe, glxxl, gllye, gllyl, glzze, glzzl, gltte, glttl, glue, gluul, g22b, g22bl, g2xxe, g2xxl, g2yye, g2yyl, g2zze, g2zzl, gyye(), gyy1(), gxxe(), gxzl(), gxl1())
END IF
111 IF page = 1 THEN
FOR i = 1 TO 9
LOCATE 3, 15 + (i - 1) * 5: PRINT i;
NEXT
LOCATE 3, 60: PRINT "10"
LOCATE 3, 65: PRINT "11"
LOCATE 3, 70: PRINT "12"
LOCATE 3, 75: PRINT " 13"
ELSE
GOTO 123
END IF
CALL keyin(MINKEY(), MAXKEY(), EXTMINKEY(), EXTMAXKEY(), SPECIALKEY$(), EXTSPECIALKEY$(), CAPSON(), CALLER, XFLD, YFLD, LNGTH, TRUE, FALSE, c$)

• *****************print screen*******************************

IF ASC(c$) = 27 THEN
CLOSE
GOTO 10000
END IF
IF ASC(c$) = 75 THEN
GOTO 10000
ELSEIF ASC(c$) = 80 THEN
PAGE1 = PAGE1 + 1
GOTO 889
ELSEIF ASC(c$) = 72 THEN
PAGE1 = PAGE1 - 1
IF PAGE1 < 0 OR a < 0 OR t < 0 OR page = 0 THEN
GOTO 10000
ELSEIF PAGE1 = 0 THEN
GOTO 110
ELSEIF PAGE1 = 1 THEN
GOTO 888
ELSEIF PAGE1 = 2 THEN
GOTO 81
ELSEIF PAGE1 > 2 THEN
GOTO 9999
END IF
ELSEIF ASC(c$) = 77 THEN
 t = 0
 tuf = 0
GOTO 777
ELSE
GOTO 10000
END IF

777 t = t + 1
page = page + 1
 tuf = tuf + 1

77 IF t < 0 OR page = 0 OR PAGE1 < 0 OR a > nofloor + 1 THEN
 GOTO 10000
END IF

IF gyy1(44) >= 480 * t THEN
 qyye(44) = gyye(44) - 480 * t
 gyy1(44) = gyy1(44) - 480 * t
ELSEIF gyy1(44) < 480 * t THEN
 qyye(44) = 0
 gyy1(44) = 0
END IF

 gig = gig + 1

 IF gxxee(4) >= 480 * t THEN
 axee(gig) = gxxee(4) - 480 * t
 jason = t + 1
 DO WHILE axee(gig) >= 480 * jason
 axee(gig) = axee(gig) - 480 * jason
 jason = jason + 1
 LOOP
 axx(gig) = gxxle(4) - 480 * t
ELSEIF gxxee(4) < 480 * t AND gxxle(4) >= 480 * t THEN
 axee(gig) = gxxee(4) - 480 * t
 axx(gig) = gxxle(4) - 480 * t
ELSEIF gxxle(4) < 480 * t THEN
 axee(gig) = 0
 axx(gig) = 0
END IF

CALL gigi(fin1, FIN2, fin3, fin4, fin5, fin6, fin7, fin8, fin9, fin10, ser1, ser2, ser3, ser4, ser5, ser6, afin1(), afin2(), afin3(), afin4(), afin5(), afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(), aser3(), aser4(), aser5(), aser6(), t, jf1, jf3, jf5, jf7, jf9, js1, js3, js5, gig)
gigl = gigl + 1

IF gxxe(4) >= 480 * t THEN
axee(gigl) = gxxe(4) - 480 * t
jasonl = t + 1

DO WHILE axee(gigl) >= 480 * jasonl
axee(gigl) = axee(gigl) - 480 * jasonl
jasonl = jasonl + 1
LOOP
axxi(gigl) = gxxl(4) - 480 * t
ELSEIF gxxe(4) < 480 * t AND gxxl(4) >= 480 * t THEN
axee(gigl) = gxxe(4) - 480 * t
axxi(gigl) = gxxl(4) - 480 * t
ELSEIF gxxl(4) < 480 * t THEN
axee(gigl) = 0
axxi(gigl) = 0
END IF

VIEW (100, 30)-(621, 479): CLS 1
LINE (0, 432)-(521, 432)
LINE (0, 0)-(521, 0)
LINE (0, 0)-(2, 432), , BF
IF bar = 1 THEN
FOR i = 1 TO 521 STEP 40
LINE (i, 0)-(i + 1, 432), , BF
NEXT
END IF

123 FOR k = 1 TO 12
LOCATE 3, 9 + 5 * k: PRINT (t) * 12 + k
NEXT
LOCATE 3, 9 + 5 * k + 1: PRINT (t) * 12 + k
IF glxx >= 480 * t THEN
xxe = glxx - 480 * t
xx = glxx - 480 * t
ELSEIF glxx < 480 * t THEN
xxe = 0
xx = 0
END IF
IF glyy >= 480 * t THEN
yye = glyy - 480 * t
YY = glyy - 480 * t
ELSEIF glyy < 480 * t THEN
yye = 0
YY = 0
END IF
IF glzz >= 480 * t THEN
zze = glzz - 480 * t
zz = glzz - 480 * t
ELSEIF glzz < 480 * t THEN
zze = 0
zz = 0
END IF
IF gltt >= 480 * t THEN
A14-10
tte = gltte - 480 * t
tt = glttl - 480 * t
ELSEIF glttl < 480 * t THEN
tte = 0
tt = 0
END IF
IF gluul >= 480 * t THEN
uue = gluue - 480 * t
uu = gluul - 480 * t
ELSEIF gluul < 480 * t THEN
uue = 0
uu = 0
END IF
IF g2xxl >= 480 * t THEN
xxe2 = g2xxe - 480 * t
xx2 = g2xxl - 480 * t
ELSEIF g2xxl < 480 * t THEN
xxe2 = 0
xx2 = 0
END IF
IF g2yy1 >= 480 * t THEN
yye2 = g2yye - 480 * t
yy2 = g2yy1 - 480 * t
ELSEIF g2yy1 < 480 * t THEN
yye2 = 0
yy2 = 0
END IF
IF g2zzl >= 480 * t THEN
zze2 = g2zze - 480 * t
zz2 = g2zzl - 480 * t
ELSEIF g2zzl < 480 * t THEN
zze2 = 0
zz2 = 0
END IF
IF g2tt1 >= 480 * t THEN
tte2 = g2tte - 480 * t
tt2 = g2ttl - 480 * t
ELSEIF g2tt1 < 480 * t THEN
tte2 = 0
tt2 = 0
END IF
IF gxxl(4) >= 480 * t THEN
qxxe(4) = gxxe(4) - 480 * t
qxx(4) = gxxl(4) - 480 * t
ELSEIF gxxl(4) < 480 * t THEN
qxxe(4) = 0
qxx(4) = 0
END IF
qxxe(4) = 0
qxx(4) = 0
END IF

IF gyyl(4) >= 480 * t THEN
qyye(4) = gyye(4) - 480 * t
qyy(4) = gyyl(4) - 480 * t
ELSEIF gyyl(4) < 480 * t THEN
qyye(4) = 0
qyy(4) = 0
END IF

IF gzze(4) >= 480 * t THEN
qzze(4) = gzzl(4) - 480 * t
qzz(4) = gzze(4) - 480 * t
ELSEIF gzze(4) < 480 * t THEN
qzze(4) = 0
qzz(4) = 0
END IF

FOR gig = nof + 3 TO nofloor + 4
 IF gxxee(4) >= 480 * t THEN
 axee(gig) = gxxee(4) - 480 * t
 jason = t + 1
 DO WHILE axee(gig) >= 480 * jason
 axee(gig) = axee(gig) - 480 * jason
 jason = jason + 1
 LOOP
 axx(gig) = gxxle(4) - 480 * t
 ELSEIF gxxee(4) < 480 * t AND gxxle(4) >= 480 * t THEN
 axee(gig) = gxxee(4) - 480 * t
 axx(gig) = gxxle(4) - 480 * t
 ELSEIF gxxle(4) < 480 * t THEN
 axee(gig) = 0
 axx(gig) = 0
 END IF
 NEXT

CALL ngigi(finl, FIN2, fin3, fin4, fin5, fin6, fin7, fin8, fin9, fin10, ser1, ser2, ser3, ser4, ser5, ser6, afin1(), afin2(), afin3(), afin4(), afin5(), afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(), aser3(), aser4(), aser5(), aser6(), t, jf1, jf3, jf5, jf7, jf9, js1, js3, js5, gig, nofloor)

FOR gig1 = nofl + 3 TO nofloor + 4
 IF gxxeei(4) >= 480 * t THEN
 axeei(gig1) = gxxeei(4) - 480 * t
 jason1 = t + 1
 DO WHILE axeei(gig1) >= 480 * jason1
 axeei(gig1) = axeei(gig1) - 480 * jason1
 jason1 = jason1 + 1
 LOOP
\begin{verbatim}
axxi(gigl) = gxxlei(4) - 480 * t
ELSEIF gxxeei(4) < 480 * t AND gxxlei(4) >= 480 * t THEN
 axxeei(gigl) = gxxeei(4) - 480 * t
 axxxi(gigl) = gxxlei(4) - 480 * t
ELSEIF gxxlei(4) < 480 * t THEN
 axxeei(gigl) = 0
 axxxi(gigl) = 0
END IF
NEXT

FOR i = 5 TO nofloor + 4
 IF gxxl(i) >= 480 * t THEN
 qxxe(i) = gxxe(i) - 480 * t
 qxx(i) = gxxl(i) - 480 * t
 ELSEIF gxxl(i) < 480 * t THEN
 qxxe(i) = 0
 qxx(i) = 0
 END IF
 IF gyyl(i) >= 480 * t THEN
 qyyl(i) = gyyl(i) - 480 * t
 qyy(i) = gyy(i) - 480 * t
 ELSEIF gyyl(i) < 480 * t THEN
 qyyl(i) = 0
 qyy(i) = 0
 END IF
 IF gzze(i) >= 480 * t THEN
 qzze(i) = gzze(i) - 480 * t
 qzz(i) = gzz(i) - 480 * t
 ELSEIF gzze(i) < 480 * t THEN
 qzze(i) = 0
 qzz(i) = 0
 END IF
NEXT

VIEW (100, 30)-(621, 479); CLS 1
LINE (0, 432)-(521, 432)
LINE (0, 0)-(521, 0)
LINE (0, 0)-(2, 432), , BF
IF bar = 1 THEN
 FOR i = 1 TO 521 STEP 40
 LINE (i, 0)-(i + 1, 432), , BF
 NEXT
END IF
IF page >= 2 AND PAGE1 = 0 AND a < nofloor + 1 THEN
 CALL plp!0e(xxe, xx, yye, YY, zze, zz, tte, tt, uue, uu,
 xxx2, xxx2, xxe2, xx2, yye2, yy2, zze2, zz2, qyye(), qyy(),
 qxxe(), qxxe())
ELSEIF page >= 2 AND PAGE1 = 1 AND a < nofloor + 1 THEN
 CALL p2pll(gxxee(), gxxeei(), page, nof1, nof, qxxe(), qxxe(),
 qyye(), qyy(), qzze(), qzz(), hj2)
ELSEIF page = 1 AND PAGE1 = 1 THEN
 CALL plp1ll(gxxee(), gxxeei(), nof, nof1, gxxe(), gxxl(),
 gyye(), gyy(), gzz(), gzzl(), hj)
A14-13
\end{verbatim}
ELSEIF page = 1 AND PAGE1 = 2 THEN
CALL plpl2(gxxee(), gxxe(i), page, nof, nofl, qx(), qxk(), qy(), qy(), qz(), qz(), hj)

ELSEIF page = 1 AND PAGE1 > 2 AND a < nofloor + 1 THEN
CALL plpl2g(gxx(), gxxl(), gyy(), gyyl(), gze(), gzzl(), i, a)

ELSEIF page >= 2 AND PAGE1 >= 2 AND a < nofloor + 1 AND exc = 1 AND yeni = 1 THEN
i = a + 3
COLOR 5
LINE (qxx(i), 80)-(qxx(i), 85), , BF
LINE (qyy(i), 110)-(qyy(i), 115), , BF
COLOR 4
LINE (qyy(i), 80)-(qyy(i) + 1, 110), , BF
COLOR 15
IF grae < 0 THEN
GOTO 445
END IF
IF qyy(i) = 0 THEN
grae = qyy(i) + lagras
ELSE
grae = qyy(i) + lagras
END IF
gral = grae + gras

IF qyy(i - 1) = 0 THEN
cvont = cvont + 1
END IF

IF grasl < 0 AND ASC(c$) = 77 THEN
dd = dd + 1
END IF
IF ASC(c$) = 75 THEN
dd = dd - 1
END IF
445 COLOR 5
IF RA1 < 0 AND grae = 0 AND grasl < 0 AND ASC(c$) = 77 THEN
LINE (0, 260)-(0, 265), , BF
CALL AL(c$, page, oh, op, i, nof, gig, gxxee(), gxxl(), fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, axe(), axx(), afin1(), afin2(), afin3(), afin4(), afin5(), afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(), aser3(), aser4(), aser5(), aser6(), uyu, tete, t, gig1, ece, dede, yeni, gxxeei(), gxxle(), axe(), axxi(), tetel, murat1, uyu1, nof1, mura1, kesin, yesin)
CALL sff(gxxee(), gxxl(), fin1, FIN2, fin3, fin4, fin5, fin6, fin7, fin8, fin9, fin10, ser1, ser2, ser3, ser4, ser5, ser6)
CALL sf(afin1(), afin2(), afin3(), afin4(), afin5(), afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(), aser3(), aser4(), aser5(), i)
ELSEIF grae < 480 * tuf AND grasl < 0 AND dd = 1 AND grae < 0 THEN
LINE (0, 260)-(grae, 265), , BF
A14-14
CALL AL(c$, page, oh, op, i, nof, gig, gxxee(), gxxle(), fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, axee(), axx(), afin1(), afin2(), afin3(), afin4(), afin5(), afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(), aser3(), aser4(), aser5(), aser6(), uyu, tete, t, gig1, ece, dede, yeni, gxxeei(), gxxlei(), axeei(), axxi(), tete1, mutat1, uyul, nof1, murat, kesin, yesin) CALL sff(gxxee(), gxxle(), fin1, FIN2, fin3, fin4, fin5, fin6, fin7, fin8, fin9, fin10, ser1, ser2, ser3, ser4, ser5, ser6) CALL sf(afin1(), afin2(), afin3(), afin4(), afin5(), afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(), aser3(), aser4(), aser5(), aser6(), i)

ELSEIF gral < 480 * tuf AND grasl <= gras AND grae > 0 THEN

IF gral > 0 AND grasl <> gras AND grasl >= 0 AND cvont = 0 THEN
 LINE (grae - 200, 260)-(gral, 265), , BF
 COLOR 10
 LINE (grae - 200, 110)-(grae - 200 + 1, 260), , BF

CALL AL(c$, page, oh, op, i, nof, gig, gxxee(), gxxle(), fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, axee(), axx(), afin1(), afin2(), afin3(), afin4(), afin5(), afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(), aser3(), aser4(), aser5(), aser6(), uyu, tete, t, gig1, ece, dede, yeni, gxxeei(), gxxlei(), axeei(), axxi(), tete1, mutat1, uyul, nof1, murat, kesin, yesin)

CALL sff(gxxee(), gxxle(), fin1, FIN2, fin3, fin4, fin5, fin6, fin7, fin8, fin9, fin10, ser1, ser2, ser3, ser4, ser5, ser6)

CALL sf(afin1(), afin2(), afin3(), afin4(), afin5(), afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(), aser3(), aser4(), aser5(), aser6(), i)

ELSEIF gra1 > 0 AND grasl <> gras AND grasl >= 0 AND cvont <> 0 THEN
 LINE (grae - 480 * (tuf - 1), 260)-(gral - 480 * (tuf - 1), 265), , BF
 COLOR 10
 LINE (grae - 480 * (tuf - 1), 110)-(grae + 1 - 480 * (tuf - 1), 260), , BF

CALL AL(c$, page, oh, op, i, nof, gig, gxxee(), gxxle(), fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, axee(), axx(), afin1(), afin2(), afin3(), afin4(), afin5(), afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(), aser3(), aser4(), aser5(), aser6(), uyu, tete, t, gig1, ece, dede, yeni, gxxeei(), gxxlei(), axeei(), axxi(), tete1, mutat1, uyul, nof1, murat, kesin, yesin)

CALL sff(gxxee(), gxxle(), fin1, FIN2, fin3, fin4, fin5, fin6, fin7, fin8, fin9, fin10, ser1, ser2, ser3, ser4, ser5, ser6)

CALL sf(afin1(), afin2(), afin3(), afin4(), afin5(), afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(), aser3(), aser4(), aser5(), aser6(), i)
ELSEIF gral > 0 AND grasl <> gras AND grasl < 0 THEN
 IF dd <= 0 THEN 'dd< new'
 LINE (0, 260)-(gral - 480, 265), , BF
 CALL AL(c$, page, oh, op, i, nof, gig, gxxee(), gxxle(),
 fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, axe(),
 axx(), afin1(), afin2(), afin3(), afin4(), afin5(), afin6(),
 afin7(), afin8(), afin9(), afin10(), aser1(), aser2(),
 aser3(), aser4(), aser5(), aser6(), uyu, tete, t, gig1, ece,
 dede, yeni, gxxeei(), gxxlei(), axe(), axxi(), tetel,
 murat1, uyul, nof1, murat, kesin, yesin)
 CALL sff(gxxee(), gxxle(), fin1, FIN2, fin3, fin4, fin5,
 fin6, fin7, fin8, fin9, fin10, ser1, ser2, ser3, ser4, ser5,
 ser6)
 CALL sf(afin1(), afin2(), afin3(), afin4(), afin5(), afin6(),
 afin7(), afin8(), afin9(), afin10(), aser1(), aser2(),
 aser3(), aser4(), aser5(), aser6(), i)

 ELSEIF dd = 1 THEN
 GRA11 = gral
 IF GRA11 < 480 THEN
 GOTO 5555
 END IF
 DO UNTIL GRA11 < 0
 GRA11 = GRA11 - 480
 LOOP
 GRA11 = GRA11 + 480

5555 COLOR 5
 IF GRA11 < 480 * (tuf) THEN
 IF gral < 480 * tuf AND gral > 0 THEN
 GRA15 = 0
 ELSEIF gral < 0 THEN
 GRA15 = gral
 END IF
 END IF
END IF

 IF GRA15 < 0 AND GRA11 > 0 AND gral < 480 * tuf THEN
 LINE (0, 260)-(0, 265), , BF
 ELSE
 LINE (0, 260)-(GRA11, 265), , BF
 END IF

1010 COLOR 5
 CALL AL(c$, page, oh, op, i, nof, gig, gxxee(), gxxle(),
 fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, axe(),
 axx(), afin1(), afin2(), afin3(), afin4(), afin5(), afin6(),
 afin7(), afin8(), afin9(), afin10(), aser1(), aser2(),
 aser3(), aser4(), aser5(), aser6(), uyu, tete, t, gig1, ece,
 dede, yeni, gxxeei(), gxxlei(), axe(), axxi(), tetel,
 murat1, uyul, nof1, murat, kesin, yesin)
 CALL sff(gxxee(), gxxle(), fin1, FIN2, fin3, fin4, fin5,
 fin6, fin7, fin8, fin9, fin10, ser1, ser2, ser3, ser4, ser5,
 ser6)
 CALL sf(afin1(), afin2(), afin3(), afin4(), afin5(), afin6(),
 afin7(), afin8(), afin9(), afin10(), aser1(), aser2(),
 aser3(), aser4(), aser5(), aser6(), i)
ELSEIF dd > 1 THEN
LINE (0, 260)-(0, 265), , BF
CALL AL(c$, page, oh, op, i, nof, gig, gxxee(), gxxle(), fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, axee(),
axx(), afin1(), afin2(), afin3(), afin4(), afin5(), afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(), aser3(), ser4(), ser5(), ser6(), uyu, tete, t, gig1, ece,
dede, yeni, gxxeii(), gxxleii(), axeei(), axxi(), tetel,
murat1, uyul, nofl, murat, kesin, yesin)
CALL sff(gxxee(), gxxle(), in1, FIN2, fin3, fin4, fin5,
fin6, fin7, fin8, fin9, fin10, ser1, ser2, ser3, ser4, ser5,
ser6)
CALL sf(afin1(), afin2(), afin3(), afin4(), afin5(), afin6(),
afin7(), afin8(), afin9(), afin10(), aser1(), aser2(),
aser3(), aser4(), aser5(), aser6(), i)
END IF

ELSEIF gra1 > 0 AND gras1 = gras AND dd > 0 THEN
LINE (grae, 260)-(gral, 265), , BF
COLOR 10
LINE (grae, 110)-(grae + 1, 260), , BF
ELSEIF gra1 < 0 AND gras1 < gras THEN
 IF gra1 + 480 < 0 THEN
LINE (0, 260)-(0, 265), , BF
 ELSE
LINE (grae - 480, 260)-(gral + 480, 265), , BF
COLOR 10
LINE (grae - 480, 110)-(grae - 480 + 1, 260), , BF
END IF
ELSEIF gra1 > 480 AND gras = gras1 THEN
IF dd > 1 THEN
LINE (0, 260)-(GRA11, 265)
ELSEIF dd <= 0 THEN
LINE (gral, 260)-(grae, 265), , BF
COLOR 10
LINE (gral, 110)-(gral + 1, 260), , BF
END IF
ELSE
COLOR 5
IF gras1 >= gras AND qyye(i - 1) > 0 THEN
LINE (grae, 260)-(gral, 265), , BF
COLOR 10
LINE (grae, 110)-(grae + 1, 260), , BF
IF gxxee(4) < 480 * (page - 1) THEN
CALL AL(c$, page, oh, op, i, nof, gig, gxxee(), gxxle(),
fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, axee(),
axx(), afin1(), afin2(), afin3(), afin4(), afin5(), afin6(),
afin7(), afin8(), afin9(), afin10(), aser1(), aser2(),
aser3(), aser4(), aser5(), aser6(), t, gig1, ece,
dede, yeni, gxxeeiO, gxxleiO, axeei(), axxi(), tetel1,
murat1, uyul, nofl, murat, kesin, yesin)
CALL sff(gxxee(), gxxle(), fin1, FIN2, fin3, fin4, fin5,
fin6, fin7, fin8, fin9, fin10, ser1, ser2, ser3, ser4, ser5, ser6)
CALL sf(afin1(), afin2(), afin3(), afin4(), afin5(),
afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(),
aser3(), aser4(), aser5(), aser6(), i)
END IF
ELSEIF gras1 >= gras AND qyye(i - 1) = 0 THEN
CALL AL(c$, page, oh, op, i, nof, gig, gxxee(), gxxle(),
fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, axee(),
axx(), afin1(), afin2(), afin3(), afin4(), afin5(), afin6(),
afin7(), afin8(), afin9(), afin10(), aser1(), aser2(),
aser3(), aser4(), aser5(), aser6(), uyul, tete, t, gig1, ece,
dede, yeni, gxxeeiO, gxxleiO, axeei(), axxi(), tetel1,
murat1, uyul, nofl, murat, kesin, yesin)
CALL sff(gxxee(), gxxle(), fin1, FIN2, fin3, fin4, fin5,
fin6, fin7, fin8, fin9, fin10, ser1, ser2, ser3, ser4, ser5, ser6)
CALL sf(afin1(), afin2(), afin3(), afin4(), afin5(), afin6(),
afin7(), afin8(), afin9(), afin10(), aser1(), aser2(),
aser3(), aser4(), aser5(), aser6(), i)
COLOR 5
LINE (0, 260)-(gral - 480, 265), , BF
CALL AL(c$, page, oh, op, i, nof, gig, gxxee(), gxxle(),
fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, axee(),
axx(), afin1(), afin2(), afin3(), afin4(), afin5(), afin6(),
afin7(), afin8(), afin9(), afin10(), aser1(), aser2(),
aser3(), aser4(), aser5(), aser6(), uyul, tete, t, gig1, ece,
dede, yeni, gxxeeiO, gxxleiO, axeei(), axxi(), tetel1,
murat1, uyul, nofl, murat, kesin, yesin)
CALL sff(gxxee(), gxxle(), fin1, FIN2, fin3, fin4, fin5,
fin6, fin7, fin8, fin9, fin10, ser1, ser2, ser3, ser4, ser5, ser6)
CALL sf(afin1(), afin2(), afin3(), afin4(), afin5(), afin6(),
afin7(), afin8(), afin9(), afin10(), aser1(), aser2(),
aser3(), aser4(), aser5(), aser6(), i)
ELSEIF gras1 < gras AND gras1 < 0 AND gras <= 0 AND dd > 1
THEN
grael = grac
GRAAl = grac
DO UNTIL grac1 >= 480
grael = grac1 + 480
LOOP
DO UNTIL GRAAl >= 480
GRAAl = GRAAl + 480
LOOP
LINE (grael, 260)-(GRAAl, 260), , BF
COLOR 10
LINE (grael, 110)-(grael + 1, 260), , BF
A14-18
CALL AL(c$, page, oh, op, i, nof, gig, gxxee(), gxxe1(),
fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, axee(),
axx(), afin1(), afin2(), afin3(), afin4(), afin5(), afin6(),
afin7(), afin8(), afin9(), afin10(), aser1(), aser2(),
aser3(), aser4(), aser5(), aser6(), uyu, tete, t, gig1, ece,
dede, yeni, gxxeei(), gxxe1i(), axxei(), axxi(), tete1,
murat1, uyul, nofl, murat, kesin, yesin)
CALL sff(gxee(), gxe1(), fin1, FIN2, fin3, fin4, fin5,
fin6, fin7, fin8, fin9, fin10, ser1, ser2, ser3, ser4, ser5, ser6)
CALL sf(afin1(), afin2(), afin3(), afin4(), afin5(),
afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(),
aser3(), aser4(), aser5(), aser6(), i)

ELSEIF cvot = 0 THEN
LINE (0, 260)-(gral - 480, 265), , BF
CALL AL(c$, page, oh, op, i, nof, gig, gxxee(),
fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, axee(),
axx(), afin1(), afin2(), afin3(), afin4(), afin5(), afin6(),
afin7(), afin8(), afin9(), afin10(), aser1(), aser2(),
aser3(), aser4(), aser5(), aser6(), uyu, tete, t, gig1, ece,
dede, yeni, gxxeei(), gxxe1i(), axxei(), axxi(), tete1,
murat1, uyul, nofl, murat, kesin, yesin)
CALL sff(gxee(), gxe1(), fin1, FIN2, fin3, fin4, fin5,
fin6, fin7, fin8, fin9, fin10, ser1, ser2, ser3, ser4, ser5, ser6)
CALL sf(afin1(), afin2(), afin3(), afin4(), afin5(),
afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(),
aser3(), aser4(), aser5(), aser6(), i)

ELSEIF cvot <> 0 THEN
LINE (0, 260)-(grae, 265), , BF
CALL AL(c$, page, oh, op, i, nof, gig, gxxee(),
fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, axee(),
axx(), afin1(), afin2(), afin3(), afin4(), afin5(), afin6(),
afin7(), afin8(), afin9(), afin10(), aser1(), aser2(),
aser3(), aser4(), aser5(), aser6(), uyu, tete, t, gig1, ece,
dede, yeni, gxxeei(), gxxe1i(), axxei(), axxi(), tete1,
murat1, uyul, nofl, murat, kesin, yesin)
CALL sff(gxee(), gxe1(), fin1, FIN2, fin3, fin4, fin5,
fin6, fin7, fin8, fin9, fin10, ser1, ser2, ser3, ser4, ser5, ser6)
CALL sf(afin1(), afin2(), afin3(), afin4(), afin5(),
afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(),
aser3(), aser4(), aser5(), aser6(), i)
END IF
END IF
IF grae < 0 THEN
GOTO 4451
END IF

grae = qhye(i) + lagras
gral = grae + gras

4451 COLOR 5
IF grae < 0 AND grae >= 0 AND ASC(c$) = 77 THEN
CALL AL(c$, page, oh, op, i, nof, gig, gxxee(), gxxle(), fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, axee(), axx(), afin1(), afin2(), afin3(), afin4(), afin5(), afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(), aser3(), aser4(), aser5(), aser6(), uyu, tete, t, gig1, ece, dede, yeni, gxxeei(), gxxlei(), axeel(), axxi(), tetel, murat1, uyul, nofl, murat, kesin, yesin)
CALL sff(gxxee(), gxxle(), fin1, FIN2, fin3, fin4, fin5, fin6, fin7, fin8, fin9, fin10, ser1, ser2, aser3, aser4, aser5, aser6)
CALL sf(afin1(), afin2(), afin3(), afin4(), afin5(), afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(), aser3(), aser4(), aser5(), aser6(), i)

ELSEIF grae < 0 AND grae < 0 THEN
LINE (grae, 260)-(grae + 480, 265), , BF
COLOR 10
LINE (grae, 110)-(grae + 1, 260), , BF
CALL AL(c$, page, oh, op, i, nof, gig, gxxee(), gxxle(), fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, axee(), axx(), afin1(), afin2(), afin3(), afin4(), afin5(), afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(), aser3(), aser4(), aser5(), aser6(), uyu, tete, t, gig1, ece, dede, yeni, gxxeei(), gxxlei(), axeel(), axxi(), tetel, murat1, uyul, nofl, murat, kesin, yesin)
CALL sff(gxxee(), gxxle(), fin1, FIN2, fin3, fin4, fin5, fin6, fin7, fin8, fin9, fin10, ser1, ser2, aser3, aser4, aser5, aser6)
CALL sf(afin1(), afin2(), afin3(), afin4(), afin5(), afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(), aser3(), aser4(), aser5(), aser6(), i)

ELSEIF grae < 0 AND grae > 480 THEN
LINE (0, 260)-(gral + 480, 265), , BF
CALL AL(c$, page, oh, op, i, nof, gig, gxxee(), gxxle(), fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, axee(), axx(), afin1(), afin2(), afin3(), afin4(), afin5(), afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(), aser3(), aser4(), aser5(), aser6(), uyu, tete, t, gig1, ece, dede, yeni, gxxeei(), gxxlei(), axeel(), axxi(), tetel, murat1, uyul, nofl, murat, kesin, yesin)
CALL sff(gxxee(), gxxle(), fin1, FIN2, fin3, fin4, fin5, fin6, fin7, fin8, fin9, fin10, ser1, ser2, aser3, aser4, aser5, aser6)
CALL sf(afin1(), afin2(), afin3(), afin4(), afin5(), afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(), aser3(), aser4(), aser5(), aser6(), i)

ELSEIF grae > 0 AND grae > 0 AND vv <> 1 THEN
CALL sf(afin1(), afin2(), afin3(), afin4(), afin5(), afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(), aser3(), aser4(), aser5(), aser6(), i)
CALL AL(c$, page, oh, op, i, nof, gig, gxxee(), gxxle(), fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, axee(),
CALL p2p22(gxxee(), gxxeei(), nof, nof1, page, qxxe(), qxx(), qyye(), qyy(), qzze(), qzz(), i, a)
ELSE
CALL p2p22(gxxee(), gxxeei(), nof, nof1, page, qxxe(), qxx(), qyye(), qyy(), qzze(), qzz(), i, a)

222 CALL keyin(MINKEY(), MAXKEY(), EXTMINKEY(), EXTMAXKEY(), SPECIALKEYS$, EXTSPECIALKEYS$, CAPSON(), CALLER, XFLD, YFLD, LNGTH, TRUE, FALSE, c$)
IF ASC(c$) = 27 THEN
CLOSE
GOTO 10000
END IF
IF ASC(c$) = 75 THEN

ELSEIF page >= 2 AND PAGE1 >= 2 AND a < nofloor + 1 THEN
IF dede = 1 THEN
CALL p2p22(gxxee(), gxxeei(), nof, nof1, page, qxxe(), qxx(), qyye(), qyy(), qzze(), qzz(), i, a)
ELSE
CALL p2p22(gxxee(), gxxeei(), nof, nof1, page, qxxe(), qxx(), qyye(), qyy(), qzze(), qzz(), i, a)

IF a = nofloor AND nofloor / 2 <> ww THEN
LINE (0, 410)-(0, 415), , BF
ELSE
COLOR 5
LINE (qzze(i + 2), 410)-(qzz(i + 2), 415), , BF
COLOR 15
END IF
END IF
END IF
END IF
LOCATE 3, 60: PRINT "10 "
LOCATE 3, 65: PRINT "11 "
LOCATE 3, 70: PRINT "12 "
LOCATE 3, 75: PRINT "13 "

IF page = 1 AND PAGE1 = 0 THEN
GOTO 10
ELSEIF page = 1 AND PAGE1 = 1 THEN
GOTO 889
ELSEIF page = 0 OR PAGE1 < 0 OR t < 0 THEN
GOTO 10000
ELSE
GOTO 123
END IF
GOTO 889
ELSE
GOTO 77
END IF

ELSEIF ASC(c$) = 77 THEN
op = op + 1
yenil = 1
yesin = yesin + 1
IF PAGE1 >= nofloor - 4 THEN
gral = gral - 480
grasl = grasl - 480
END IF
IF gral < 480 * tuf AND gral > 0 THEN
gral = gral - 480
ELSEIF gral < 0 THEN
GRA15 = gral
END IF
GOTO 777
ELSEIF ASC(c$) = 80 THEN
PAGE1 = PAGE1 + 1
IF PAGE1 = 1 THEN
GOTO 889
ELSEIF PAGE1 = 2 THEN
GOTO 81
ELSE
cc = cc - 3
GOTO 999
END IF

ELSEIF ASC(c$) = 72 THEN
yeni = 0
PAGE1 = PAGE1 - 1
IF PAGE1 < 0 OR a < 0 OR t < 0 THEN
GOTO 10000
ELSEIF PAGE1 = 1 AND a > 0 THEN
GOTO 889
ELSEIF PAGE1 = 2 AND a > 0 THEN
GOTO 81
ELSEIF PAGE1 = 0 AND a > 0 THEN
GOTO 110
ELSEIF a = 1 THEN
GOTO 889
ELSEIF a = nofloor AND nofloor / 2 <> ww AND dff = 0 THEN
A14-22
a = a + 4
cc = cc + 4
GOTO 9999
ELSEIF a = nofloor AND nofloor / 2 <> ww AND dff = 1 THEN
a = a
cc = cc + 20
GOTO 9999
ELSE
a = a + 1
cc = cc + 1
IF a = 0 THEN
GOTO 889
ELSEIF a < 0 THEN
GOTO 10000
ELSE
GOTO 9999
END IF
ELSE
GOTO 10000
END IF

888 IF PAGE1 = 1 THEN
889 a = 1
IF t < 0 THEN
GOTO 10000
END IF
VIEW (100, 30)-(621, 479): CLS 1
COLOR 12
LOCATE 5, 2
PRINT , TAB(480); "SUPERSTRUCT. "
COLOR 13
LOCATE 8, 1
PRINT , TAB(480); " GROUND TO", TAB(480); " 1st FLOOR ":
COLOR 15
LOCATE 12, 1
PRINT , TAB(480); " 9":
COLOR 15
PRINT " Frc Cols/ ", TAB(480); " Walls "; TAB(480); "
LOCATE 17, 1
COLOR 3
PRINT , TAB(480); "10":
COLOR 15
PRINT " 1st Flr "; TAB(480); " Frc Slab/", TAB(480); " Beams "; TAB(480); "
LOCATE 22, 1
COLOR 3
PRINT , TAB(480); "11":
COLOR 15
PRINT " Frc Stair"; TAB(480); "
COLOR 13
LOCATE 25, 1
PRINT , TAB(480); " 1st TO", TAB(480); " 2nd FLOOR ";
COLOR 15
LOCATE 29, 1
COLOR 3
PRINT , TAB(480); "12";
COLOR 15
PRINT " Frc Cols/", TAB(480); " Walls "; TAB(480); " ";
LOCATE 33, 1
COLOR 3
PRINT , TAB(480); "13";
COLOR 15
PRINT " 2nd Flr "; TAB(480); " Frc Slab/", TAB(480);
" Beams ";
COLOR 3
LOCATE 38, 1
PRINT , TAB(480); "14";
COLOR 15
PRINT " Frc Stair"; TAB(480); " ";
COLOR 13
LOCATE 41, 1
PRINT , TAB(480); " 2nd TO ", TAB(480); " 3rd FLOOR ";
TAB(480); " ";
COLOR 3
LOCATE 45, 1
PRINT , TAB(480); "15";
COLOR 15
PRINT " Frc Cols/", TAB(480); " Walls "; TAB(480); " ";
LOCATE 49, 1
COLOR 3
PRINT , TAB(480); "16";
COLOR 15
PRINT " 3rd Flr "; TAB(480); " Frc Slab/", TAB(480);
" Beams "; TAB(480); " ";
COLOR 3
LOCATE 54, 1
PRINT , TAB(480); "17";
COLOR 15
PRINT " Frc Stair "; TAB(480); " ";

LINE (0, 0)-(522, 0)
LINE (0, 432)-(522, 432)
IF bar = 1 THEN
FOR i = 0 TO 520 STEP 40
LINE (i, 0)-(i + 1, 432), , BF
NEXT
END IF
8899 IF PAGE1 = 1 AND page = 1 THEN
CALL plpl1(gxxe1, gxxe1i, nof, nofl, gxxe1, gxx1, gyy1, gyyl, gzze1, gzz1, hj)
ELSEIF page >= 2 AND PAGE1 = 1 AND a < nofloor + 1 THEN
CALL p2p1(gxxe1, gxx1i, page, nof, nofl, qxx, qxx1, qyy, qyy1, qzze, qzz, hj2)
END IF
ELSEIF page = 1 AND PAGE1 = 2 THEN
CALL plp12(gxxee(), gxxeei(), page, nof, nof1, qxxe(), qxx(), qyye(), qyy(), qzze(), qzz(), hjl)

END IF

CALL keyin(MINKEY(), MAXKEY(), EXTMINKEY(), EXTMAXKEY(), SPECIALKEY$(), EXTSPECIALKEY$(), CAPSON(), CALLER, XFLD, YFLD, LNGTH, TRUE, FALSE, c$)

IF ASC(c$) = 27 THEN
CLOSE
GOTO 10000
END IF
IF page = 1 AND ASCII(c$) = 75 AND t <> 0 THEN
GOTO 10
ELSEIF ASCII(c$) = 75 THEN
 t = t - 1
 page = page - 1
 'new'
 IF PAGE1 >= nofloor - 4 THEN
 tuf = tuf - 1
 END IF
 IF page = 0 OR PAGE1 < 0 OR t < 0 THEN
 GOTO 10000
 END IF
 GOTO 77
ELSEIF ASCII(c$) = 77 THEN
 GOTO 777
ELSEIF ASCII(c$) = 80 THEN
 PAGE1 = PAGE1 - 1
 IF PAGE1 = 2 THEN
 GOTO 81
 ELSEIF PAGE1 = 1 THEN
 GOTO 889
 ELSEIF PAGE1 = 2 THEN
 GOTO 81
 ELSEIF PAGE1 = 0 THEN
 GOTO 110
 ELSE
 a = a - 4
 cc = cc - 4
 IF a = 2 THEN
 GOTO 81
 ELSEIF a < 0 THEN
 GOTO 10000
 ELSE
 GOTO 9999
 END IF
 END IF
END IF
999 IF a = nofloor AND ASC(c$) = 80 AND nofloor / 2 = ww THEN
GOTO 10000
END IF
IF a = nofloor + 1 AND ASC(c$) = 80 AND nofloor / 2 <> ww THEN
GOTO 10000
END IF
IF a = nofloor AND nofloor / 2 <> ww AND ASC(c$) = 80 THEN
GOTO 1212
END IF
IF a = nofloor AND nofloor / 2 <> ww AND ASC(c$) = 72 THEN
qqq = 1
END IF
IF a = nofloor - 1 AND nofloor / 2 = ww AND ASC(c$) = 72 THEN
df = 1
END IF
IF ASC(c$) = 27 THEN
CLOSE
GOTO 10000
END IF
9999 IF PAGE1 >= 3 AND ASC(c$) = 80 AND a = nofloor THEN
a = a
ELSEIF PAGE1 >= 3 AND ASC(c$) = 80 THEN
IF a = nofloor - 1 AND nofloor / 2 = ww AND qqq = 1 THEN
cc = cc - 3
END IF
IF a = nofloor - 1 AND nofloor / 2 = ww AND qbb = 1 THEN
cc = cc - 3
END IF
a = a - 1
cc = cc - 1
ELSEIF PAGE1 >= 3 AND ASC(c$) = 72 THEN
a = a - 3
IF nofloor / 2 <> ww THEN
cc = cc
ELSE
cc = cc - 2
END IF
END IF
IF nofloor / 2 <> ww AND ASC(c$) = 72 THEN
cc = cc - 18
END IF
IF a = 0 THEN
GOTO 888
END IF
ELSEIF nofloor / 2 = ww AND a = nofloor - 2 THEN
GOTO 1222
ELSEIF nofloor / 2 <> ww AND a = nofloor - 1 THEN
GOTO 1222
END IF

A14-26
VIEW (100, 30)-(621, 479): CLS 1

IF a = nofloor - 1 THEN
 a = a + 1
 cc = cc - 2
GOTO 156
END IF

IF a = nofloor THEN
 GOTO 156
END IF

IF ASC(c$) = 80 THEN
 cc = cc + 1
ELSEIF ASC(c$) = 72 AND che = 1 THEN
 cc = cc - 20
ELSE
 cc = cc - 8
END IF

LOCATE (5), 1
PRINT , TAB(480); a
PRINT , TAB(480); "
COLOR 13
LOCATE (9), 1
PRINT , TAB(480); a; "th TO "; TAB(480); a + 1; "th FLOOR"
LOCATE (13), 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Frc Cols/", TAB(480); " Walls "; TAB(480); ""
LOCATE (17), 1
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT a + 1; "th Flr",TAB(480); " Frc Slab/",
TAB(480); " Beams";
TAB(480); " "
LOCATE (22), 1
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Frc Stair";TAB(480); " ";
TAB(480); " "

IF a >= nofloor - 1 AND nofloor / 2 = ww THEN
 COLOR 13
 LOCATE (25), 1
 PRINT , TAB(480); a; "th TO "; TAB(480); " ROOF "
 LOCATE (29), 1
 cc = cc + 1
 COLOR 3
 PRINT cc;
 COLOR 15
 PRINT "Frc Cols/", TAB(480); " Walls";
 LOCATE (33), 1
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT " Roof \"; TAB(480); " Frc Slab/\",
TAB(480); " Beams \";
LOCATE (38), 1
COLOR 12
PRINT , TAB(480); "BUILDING \", TAB(480); "ENVELOPE "
LOCATE (42), 1
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT , TAB(480); "Internal \", TAB(480); "Walls "
LOCATE (46), 1
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT , TAB(480); "External \", TAB(480); "Walls "
LOCATE (50), 1
COLOR 12
PRINT , TAB(480); "ROOFING \", TAB(480); " "
COLOR 13
LOCATE (53), 1
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT , TAB(480); "Roof Asphalt\", TAB(480);"
 a = a + 1
cc = cc + 1
ece = 1
GOTO 156
ELSE
 a = a + 1
COLOR 13
LOCATE (25), 1
PRINT TAB(480); a; "th TO "; TAB(480); a + 1; "th FLOOR",
TAB(480);""
LOCATE (29), 1
COLOR 3
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Frc Cols/\", TAB(480); " Walls "; TAB(480); " ";
TAB(480);"
LOCATE (33), 1
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT a + 1; "th Flr"; TAB(480); " Frc Slab/\", TAB(480);
" Beams";
TAB(480);" "; TAB(480); " "
LOCATE (38), 1
cc = cc + 1

A14-28
COLOR 3
PRINT cc;
COLOR 15
PRINT "Frc Stair"; TAB(480); "
END IF
a = a + 1

IF a >= nofloor - 1 THEN
LOCATE (40), 1
PRINT , TAB(480); "
LOCATE (41), 7
COLOR 13
PRINT , TAB(480); a; "th TO "; TAB(480); " ROOF
LOCATE (45), 1
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Frc Cols/", TAB(480); " Walls ";TAB(480); ","
LOCATE (49), 1
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Roof "; TAB(480); " Frc Slab/",
TAB(480); " Beams "; TAB(480); "
FOR G = 53 TO 57
LOCATE (G), 1
PRINT , TAB (480) ; "
NEXT
a = a + 1
cc = cc + 1
dede = 1
GOTO 156
ELSE
LOCATE (40), 7
PRINT TAB(480); "
LOCATE (41), 7
COLOR 13
PRINT TAB(480); a; "th TO "; TAB(480); a + 1; "th FLOOR";
TAB(480); "
LOCATE (45), 1
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Frc Cols/", TAB(480); " Walls "; TAB(480); "
LOCATE (49), 1
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT a + 1; "th Flr"; TAB(480); " Frc Slab/",
TAB(480); " Beams"; TAB(480); "
LOCATE (53), 1
PRINT TAB(480); "
LOCATE (54), 1
A14-29
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Frc Stair"; TAB(480); "
LOCATE (56), 1
PRINT TAB(480); "
END IF
a = a + 1
cc = cc + 1
GOTO 156

IF a = nofloor THEN
GOTO 1222
END IF
LINE (0, 0)-(522, 0)
LINE (0, 432)-(522, 432)
GOTO 156

1222 CALL keyin(MINKEY(), MAXKEY(), EXTMINKEY(), EXTMAXKEY(), SPECIALKEY$,(), EXTSPECIALKEY$,(), CAPSON(), CALLER, XFLD, YFLD, LNGTH, TRUE, FALSE, c$)

'***************ROOF**

1223 VIEW (100, 30)-(621, 479): CLS 1

IF ASC(c$) = 80 THEN
PAGE1 = PAGE1 + 1
END IF
LINE (0, 0)-(522, 0)
LINE (0, 432)-(522, 432)
IF bar = 1 THEN
FOR i = 0 TO 520 STEP 40
LINE (i, 0)-(i + 1, 432), , BF
NEXT
END IF
90090 IF tt = 0 THEN
i = a + 3
CALL p2pl2(qxx(), qyy(), qyy(), qyy(), qzze(), qzz(), i, a)
END IF

1212 IF nofloor / 2 <> ww THEN
LOCATE (5), 1
PRINT , TAB(480); "
LOCATE (9), 1
COLOR 13
PRINT , TAB(480); a - 1; "th TO "; TAB(480); " ROOF
LOCATE (13), 1
cc = cc - 2
COLOR 3
PRINT cc;
COLOR 15

A14-30
PRINT "Frc Cols/", TAB(480); " Walls "; TAB(480); " "
LOCATE (17), 1
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Roof "; TAB(480); " Frc Slab/", TAB(480); " Beam "; TAB(480); " "
LOCATE (21), 1
COLOR 12
PRINT , TAB(480); "BUILDING ", TAB(480); " ENVELOPE "
LOCATE (24), 1
PRINT , TAB(480); " "
LOCATE (25), 1
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Internal ", TAB(480); " Walls ", TAB(480); " "
LOCATE (28), 1
PRINT , TAB(480); " "
LOCATE (29), 1
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "External ", TAB(480); " Walls "; TAB(480); " "
LOCATE (32), 1
COLOR 12
PRINT , TAB(480); "ROOFING ", TAB(480); " "
LOCATE (36), 1
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Roof "; TAB(480); " Asphalt "; TAB(480); " "
LOCATE (39), 1
cc = cc + 1
COLOR 12
PRINT "FINISHES "
LOCATE (41), 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Internal "; TAB(480); " "
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Wall "; TAB(480); " "
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Floor" ; TAB(480) ; " Floor
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Ceiling" ; TAB(480) ; " Ceiling
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "External" ; TAB(480) ; " External
COLOR 12
PRINT "SERVICES" ; TAB(480) ; " SERVICES
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Lifts" ; TAB(480) ; " Lifts
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Mechanic." ; TAB(480) ; " Mechanic.
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Electric." ; TAB(480) ; " Electric.
END IF

IF nofloor / 2 = ww THEN
LOCATE (5), 1
PRINT , TAB(480); "
LOCATE (9), 1
COLOR 13
PRINT , TAB(480); a + 1; "th TO "; TAB(480); " ROOF
LOCATE (13), 1
cc = cc + 4
COLOR 3
PRINT cc;
COLOR 15
PRINT "Frc Cols/", TAB(480); " Frc Cols/
TAB(480); " Walls
LOCATE (17), 1
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Roof "; TAB(480); " Roof
TAB(480); " Frc Slab/",
TAB(480); " Beams "; TAB(480); " Beams
LOCATE (21), 1
COLOR 12
PRINT , TAB(480); "BRICKWORK ", TAB(480); "BLOCKWORK
LOCATE (25), 1
PRINT , TAB(480); "
LOCATE (26), 1
cc = cc + 1

A14-32
COLOR 3
PRINT cc;
COLOR 15
PRINT "Internal ", TAB(480); " Walls ", TAB(480); " ",
TAB(480); " ", LOCATE (28), 1
PRINT , TAB(480); " ", TAB(480); " ",
TAB(480); " ", LOCATE (30), 1
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT ; "External ", TAB(480); " Walls ",
LOCATE (32), 1
COLOR 12
PRINT , TAB(480); "ROOFING ", TAB(480); " ",
LOCATE (35), 1
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Roof "; TAB(480); " Asphalt ",
LOCATE (39), 1
cc = cc + 1
COLOR 12
PRINT "FINISHES ",
LOCATE (41), 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Internal "; TAB(480); " ",
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Wall "; TAB(480); " ",
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Floor "; TAB(480); " ",
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Ceiling "; TAB(480); " ",
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "External "; TAB(480); " ",
COLOR 12
PRINT "SERVICES "; TAB(480); " ",
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Lifts "; TAB(480); " ",
A14-33
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Mechanic. "; TAB(480); "
cc = cc + 1
COLOR 3
PRINT cc;
COLOR 15
PRINT "Electric. "; TAB(480); "
END IF

yeni = 1
COLOR 15
VIEW (100, 30)-(621, 479): CLS 1
LINE (0, 0)-(522, 0)
LINE (0, 432)-(522, 432)
IF bar = 1 THEN
FOR i = 0 TO 520 STEP 40
LINE (i, 0)-(i + 1, 432), , BF
NEXT
END IF

gig = gig + 1

IF gxxee(4) >= 480 * t THEN
axee(gig) = gxxee(4) - 480 * t
jason = t + 1

DO WHILE axee(gig) >= 480 * jason
axee(gig) = axee(gig) - 480 * jason
jason = jason + 1
LOOP

axx(gig) = gxxle(4) - 480 * t
ELSEIF gxxee(4) < 480 * t AND gxxle(4) >= 480 * t THEN
axee(gig) = gxxee(4) - 480 * t
axx(gig) = gxxle(4) - 480 * t
ELSEIF gxxle(4) < 480 * t THEN
axee(gig) = 0
axx(gig) = 0
END IF

gigl = gigl + 1

IF gxxeei(4) >= 480 * t THEN
axeei(gigl) = gxxeei(4) - 480 * t
jason1 = t + 1

DO WHILE axeei(gigl) >= 480 * jason1
axeei(gigl) = axeei(gigl) - 480 * jason1
jason1 = jason1 + 1
LOOP

axxi(gigl) = gxxlei(4) - 480 * t
ELSEIF gxxeei(4) < 480 * t AND gxxlei(4) >= 480 * t THEN

A14-34
\[\text{axeei}(gigl) = \text{gxxeei}(4) - 480 \times t \]
\[\text{axxi}(gigl) = \text{gxxlei}(4) - 480 \times t \]

ELSEIF \(\text{gxxlei}(4) < 480 \times t \) THEN
\[\text{axeei}(gigl) = 0 \]
\[\text{axxi}(gigl) = 0 \]
END IF

\[i = a + 2 \]
COLOR 5
LINE (qxxe(i + 1), 80) - (qxx(i + 1), 85), , BF
LINE (qyye(i + 1), 110) - (qyy(i + 1), 115), , BF
COLOR 4
IF qyye(i + 1) = 0 THEN
LINE (0, 0) - (0, 0), , BF
ELSE
LINE (qyye(i + 1), 80) - (qyye(i + 1) + 1, 110), , BF
END IF
COLOR 15
IF gral < 0 THEN
GOTO 4452
END IF
IF qyye(i) = 0 THEN
grae = gyye(i) + lagras
ELSE
grae = qyye(i + 1) + lagras
END IF
gral = grae + gras

4452 COLOR 5

IF gral < 0 AND grae = 0 AND ASC(c$) = 77 THEN
LINE (0, 260) - (0, 265), , BF
ELSE
LINE (grae, 260) - (gral, 265), , BF
COLOR 10
LINE (grae, 110) - (grae + 1, 260), , BF
END IF
COLOR 15
IF yeni = 0 THEN
IF i <= nof + 3 AND oh <> op THEN
CALL col(gxxee(), gxxle(), fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5)
CALL sff(gxxee(), gxxle(), fin1, FIN2, fin3, fin4, fin5, fin6, fin7, fin8, fin9, fin10, ser1, ser2, ser3, ser4, ser5, ser6)
ELSEIF i >= nof + 3 AND gig < i AND oh = 0 AND op = 0 THEN
CALL col(gxxee(), gxxle(), fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5)
CALL sff(gxxee(), gxxle(), fin1, FIN2, fin3, fin4, fin5, fin6, fin7, fin8, fin9, fin10, ser1, ser2, ser3, ser4, ser5, ser6)
ELSEIF i + 1 >= nof + 3 AND gig >= i AND oh <> op THEN
CALL col(gxxee(), gxxle(), fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5)
A14-35
CALL sff(gxxee(), gxxle(), fin1, FIN2, fin3, fin4, fin5, fin6, fin7, fin8, fin9, fin10, ser1, ser2, ser3, ser4, ser5, ser6)

ELSEIF i >= nof + 3 AND oh > op AND gig > i THEN
CALL ccl(gxxee(), gxxle(), fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5)
CALL sff(gxxee(), gxxle(), fin1, FIN2, fin3, fin4, fin5, fin6, fin7, fin8, fin9, fin10, ser1, ser2, ser3, ser4, ser5, ser6)
END IF

IF i <= nofl + 3 AND oh <> op THEN
LINE (gxxeei(4), 175)- (gxxlei(4), 180), , BF
IF gxxeei(4) > 480 THEN
poi = gxxeei(4)
IF poi > gzze(4) THEN
poi = gzze(4)
END IF
DO UNTIL poi < 480
poi = poi - 480
LOOP
END IF
COLOR 1
LINE (poi, 165)-(poi + 2, 180), , BF
COLOR 5

ELSEIF i >= nofl + 3 AND gigl < i AND oh = 0 AND op = 0 THEN
LINE (gxxeei(4), 175)-(gxxlei(4), 180), , BF

IF gxxeei(4) > 480 THEN
poi = gxxeei(4)
IF poi > gzze(4) THEN
poi = gzze(4)
END IF
DO UNTIL poi < 480
poi = poi - 480
LOOP
END IF
COLOR 1
LINE (poi, 165)-(poi + 2, 180), , BF
COLOR 5

ELSEIF i + 1 >= nofl + 3 AND gigl >= i AND oh <> op THEN
LINE (gxxeei(4), 175)-(gxxlei(4), 180), , BF
IF gxxeei(4) > 480 THEN
poi = gxxeei(4)
IF poi > gzze(4) THEN
poi = gzze(4)
END IF
DO UNTIL poi < 480
poi = poi - 480
LOOP
END IF
COLOR 1
LINE (poi, 165)-(poi + 2, 180), , BF
COLOR 5

A14-36
ELSEIF i >= nofl + 3 AND oh > op AND gigl > i THEN
LINE (gxxeei(4), 175)-(gxxlei(4), 180), , BF
IF gxxeei(4) > 480 THEN
 poi = gxxeei(4)
 IF poi > gzze(4) THEN
 poi = gzze(4)
 END IF
END IF
DO UNTIL poi < 480
 poi = poi - 480
LOOP
COLOR 1
LINE (poi, 165)-(poi + 2, 180), , BF
COLOR 5
END IF
ELSEIF yeni = 1 THEN
 IF t = 0 AND gxxee(4) <= 480 THEN
 LINE (gxxe(a + 3), 80)-(gxxl(a + 3), 85), , BF
 LINE (gyye(a + 3), 110)-(gyyl(a + 3), 115), , BF
 LINE (gyye(a + 3), 80)-(gyye(a + 3) + 1, 110), , BF
 CALL col(gxxee(), gxxleO, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5)
 CALL sff(gxxee(), gxxleO, fin1, FIN2, fin3, fin4, fin5, fin6, fin7, fin8, fin9, fin10, ser1, ser2, ser3, ser4, ser5, ser6)
 ELSEIF t = 0 AND gxxee(4) > 480 THEN
 LINE (0, 205)-(0, 210), , BF
 ELSEIF oh = op AND t <> 0 THEN
 CALL AL(c$, page, oh, op, i, nof, gig, gxxee(), gxxle(), fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, axee(), axx(), afin1(), afin2(), afin3(), afin4(), afin5(), afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(), aser3(), aser4(), aser5(), aser6(), uyu, tete, t, gigl, ece, dede, yeni, gxxeei(), gxxlei(), axeei(), axxi(), tetel, murati, uyul, nofl, murat, kesin, yesin)
 CALL sf(afin1(), afin2(), afin3(), afin4(), afin5(), afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(), aser3(), aser4(), aser5(), aser6(), i)
 CALL sff(gxxee(), gxxleO, fin1, FIN2, fin3, fin4, fin5, fin6, fin7, fin8, fin9, fin10, ser1, ser2, ser3, ser4, ser5, ser6)
 ELSEIF oh > op AND t <> 0 THEN
 CALL AL(c$, page, oh, op, i, nof, gig, gxxee(), gxxle(), fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, axee(), axx(), afin1(), afin2(), afin3(), afin4(), afin5(), afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(), aser3(), aser4(), aser5(), aser6(), uyu, tete, t, gigl, ece, dede, yeni, gxxeei(), gxxlei(), axeei(), axxi(), tetel, murati, uyul, nofl, murat, kesin, yesin)
 CALL sff(gxxee(), gxxleO, fin1, FIN2, fin3, fin4, fin5, fin6, fin7, fin8, fin9, fin10, ser1, ser2, ser3, ser4, ser5, ser6)
END ELSEIF
CALL sf(afin1(), afin2(), afin3(), afin4(), afin5(), afin6(),
 afin7(), afin8(), afin9(), afin10(), aser1(), aser2(),
 aser3(), aser4(), aser5(), aser6(), i)

ELSEIF oh < op THEN
 CALL AL(c$, page, oh, op, i, nof, gig, gxxee(), gxxle(),
 fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, axee(),
 axx(), afin1(), afin2(), afin3(), afin4(), afin5(), afin6(),
 afin7(), afin8(), afin9(), afin10(), aser1(), aser2(),
 aser3(), aser4(), aser5(), aser6(), uyu, tete, t, gig1, ece,
 de, yeni, gxxeei(), gxxlei(), axeei(), axxi(), tetel,
 murat1, uyul, nof1, murat, kesin, yesin)
 CALL sff(gxxee(), gxxle(), fin1, FIN2, fin3, fin4, fin5,
 fin6, fin7, fin8, fin9, fin10, ser1, ser2, aser3, aser4,
 aser5, aser6)
 CALL sf(afin1(), afin2(), afin3(), afin4(), afin5(), afin6(),
 afin7(), afin8(), afin9(), afin10(), aser1(), aser2(),
 aser3(), aser4(), aser5(), aser6(), i)
END IF

COLOR 5
IF t = 0 AND gxxeei(4) <= 480 THEN
 LINE (gxxeei(4), 175)-(gxxlei(4), 180), , BF
 IF gxxeei(4) < 480 THEN
 poi = gxxeei(4)
 IF poi < gzze(4) THEN
 poi = gzze(4)
 END IF
 DO UNTIL poi < 480
 poi = poi - 480
 LOOP
 END IF
 COLOR 9
 LINE (poi, 165)-(poi + 2, 180), , BF
 COLOR 5
ELSEIF t = 0 AND gxxeei(4) > 480 THEN
 LINE (0, 175)-(0, 180), , BF
ELSEIF oh = op AND t <> 0 THEN
 LINE (axeei(gig1), 175)-(axxi(gig1), 180), , BF
ELSEIF oh > op AND t <> 0 THEN
 LINE (axeei(gig1), 175)-(axxi(gig1), 180), , BF
ELSEIF oh < op THEN
 LINE (axeei(gig1), 175)-(axxi(gig1), 180), , BF
END IF
END IF
COLOR 15

IF nofloor / 2 <> ww AND a = nofloor OR nofloor / 2 = ww AND
 a = nofloor - 2 THEN
 CALL keyin(MINKEY(), MAXKEY(), EXTMINKEY(), EXTMAXKEY(),
 SPECIALKEY$,(), EXT SPECIALKEY$((), CAPSON(), CALLER, XFLD,
 YFLD, LNGTH, TRUE, FALSE, c$)
 IF ASC(c$) = 27 THEN

A14-38
CLOSE
GOTO 10000
END IF
IF page = 1 AND ASC(c$) = 75 AND t <> 0 THEN
GOTO 10
ELSEIF ASC(c$) = 75 THEN
 t = t - 1
 page = page
 exc = 1
 oh = oh + 1
 tuf = tuf - 1
 IF page = 0 OR PAGE1 < 0 OR t < 0 THEN
 GOTO 10000
 END IF
GOTO 77
ELSEIF ASC(c$) = 77 THEN
 t = t
 tuf = tuf + 1
 che = 1
 gig = gig + 1
 IF gxxee(4) >= 480 * t THEN
 axee(gig) = gxxee(4) - 480 * t
 jason = t + 1
 DO WHILE axee(gig) >= 480 * jason
 axee(gig) = axee(gig) - 480 * jason
 jason = jason + 1
 LOOP
 axx(gig) = gxxle(4) - 480 * t
 ELSEIF gxxee(4) < 480 * t AND gxxle(4) >= 480 * t THEN
 axee(gig) = gxxee(4) - 480 * t
 axx(gig) = gxxle(4) - 480 * t
 ELSEIF gxxle(4) < 480 * t THEN
 axee(gig) = 0
 axx(gig) = 0
 END IF
 gigl = gigl + 1
 IF gxxeei(4) >= 480 * t THEN
 axeei(gigl) = gxxeei(4) - 480 * t
 jasonl = t + 1
 DO WHILE axeei(gigl) >= 480 * jasonl
 axeei(gigl) = axeei(gigl) - 480 * jasonl
 jasonl = jasonl + 1
 LOOP
 axxi(gigl) = gxxlei(4) - 480 * t
 ELSEIF gxxeei(4) < 480 * t AND gxxlei(4) >= 480 * t THEN
 axeei(gig) = gxxeei(4) - 480 * t
 axxi(gig) = gxxlei(4) - 480 * t
 ELSEIF gxxlei(4) < 480 * t THEN
 axeei(gigl) = 0
A14-39
axxi(gigl) = 0
END IF

page = page + 1
exc = 1
op = op + 1
IF nofloor / 2 = ww AND a = nofloor - 2 THEN
df = 1
END IF
IF nofloor / 2 <> ww AND a = nofloor THEN
dff = 1
END IF
GOTO 777
ELSEIF ASC(c$) = 80 THEN
GOTO 1000
ELSEIF ASC(c$) = 72 THEN
PAGE1 = PAGE1 - 1
IF a < nofloor AND nofloor / 2 <> ww THEN
a = a - 4
cc = cc - 4
ELSEIF a < nofloor AND nofloor / 2 = ww THEN
a = a + 1
cc = cc - 11
ELSEIF a >= nofloor AND nofloor / 2 = ww THEN
a = a
cc = cc
ELSEIF a >= nofloor AND nofloor / 2 <> ww THEN
a = a
cc = cc + 8
END IF
IF PAGE1 < 0 OR a < 0 THEN
GOTO 10000
ELSEIF PAGE1 = 1 OR a = 1 THEN
GOTO 889
ELSEIF PAGE1 = 0 OR a = 1 THEN
GOTO 110
ELSEIF PAGE1 = 2 OR a = 2 THEN
GOTO 81
ELSEIF a > 2 THEN
GOTO 999
END IF
END IF
END IF

FOR i = 5 TO nofloor + 4
IF gxxl(i) >= 480 * t THEN
qxxe(i) = gxxe(i) - 480 * t
qxx(i) = gxxl(i) - 480 * t
ELSEIF gxxl(i) < 480 * t THEN
qxxe(i) = 0
qxx(i) = 0
END IF
IF gyyl(i) >= 480 * t THEN
qyye(i) = gyye(i) - 480 * t
qyy(i) = gyyl(i) - 480 * t
ELSEIF gyyl(i) < 480 * t THEN
qyy(i) = 0
qyy(i) = 0
END IF
END IF
A14-40
qyye(i) = 0
qyy(i) = 0
END IF

IF gzze(i) >= 480 * t THEN
qzze(i) = gzzl(i) - 480 * t
qzz(i) = gzze(i) - 480 * t
ELSEIF gzze(i) < 480 * t THEN
qzze(i) = 0
qzz(i) = 0
END IF

IF i >= nof + 3 THEN
FOR gig = nof + 3 TO nofloor + 4
IF gxxle(4) >= 480 * t THEN
axee(gig) = gxxee(4) - 480 * t
axx(gig) = gxxle(4) - 480 * t
ELSEIF gxxle(4) < 480 * t THEN
axee(gig) = 0
axx(gig) = 0
END IF
NEXT
END IF
CALL ngigi(finl, FIN2, fin3, fin4, fin5, fin6, fin7, fin8,
fin9, fin10, ser1, ser2, ser3, ser4, ser5, ser6, afin1(),
afin2(), afin3(), afin4(), afin5(), afin6(), afin7(),
afin8(), afin9(), afin10(), aser1(), aser2(), aser3(),
aser4(), aser5(), aser6(), t, jf1, jf3, jf5, jf7, jf9, jsl,
js3, js5, gig, nofloor)
IF i >= nofl + 3 THEN
FOR gig1 = nofl + 3 TO nofloor + 4
IF i(4) >= 480 * t THEN
axee1(gig1) = gxxee1(4) - 480 * t
axx1(gig1) = gxxle1(4) - 480 * t
ELSEIF gxxle1(4) < 480 * t THEN
axee1(gig1) = 0
axx1(gig1) = 0
END IF
NEXT
END IF
NEXT
END IF

IF ASC(c$) = 75 OR ASC(c$) = 77 THEN
GOTO 1223
ELSEIF ASC(c$) = 80 THEN
GOTO 10000
ELSEIF ASC(c$) = 72 THEN
PAGE1 = PAGE1 - 1
a = a + 3
cc = cc + 3
ELSEIF PAGE1 = 2 OR a = 2 THEN
GOTO 81
ELSE
GOTO 9999
END IF

156 LINE (0, 0)-(522, 0)
LINE (0, 432)-(522, 432)
IF bar = 1 THEN
FOR i = 0 TO 520 STEP 40
LINE (i, 0)-(i + 1, 432), , BF
NEXT
END IF
IF page = 1 AND PAGE1 = 2 THEN
CALL plp12(gxxe(), gxxeei(), page, nof, nof1, qxxe(), qxx(), qyye(), qyy(), qzze(), qzz(), hjl)
END IF
IF page = 1 AND PAGE1 > 2 AND a <= nofloor THEN
CALL plp2g(gxxe(), gxxl(), qyye(), qyy(), qzze(), qzz(), i, a)
COLOR 5
ELSEIF page = 1 AND PAGE1 > 2 AND a <= nofloor AND nofloor/2 <> ww THEN
CALL p2p22(gxxe(), gxxeeiO, page, qxxe(), qxx(), qyye(), qyy(), qzze(), qzz(), i, a)
IF nofloor / 2 = ww THEN
LINE (gzze(i + 2), 410)-(gzzl(i + 2), 415), , BF
END IF
ELSEIF page >=2 AND PAGE1>2 AND a<=nofloor AND nofloor/2 <>ww THEN
CALL p2p22(gxxe(), gxxeeiO, nof, nof1, page, qxxe(), qxx(), qyye(), qyy(), qzze(), qzz(), i, a)
IF nofloor / 2 = ww THEN
LINE (qzze(i + 3), 410)-(qzzl(i + 3), 415), , BF
END IF
ELSEIF page >=2 AND PAGE1>2 AND a<=nofloor AND nofloor/2 <>ww THEN
CALL p2p22(gxxe(), gxxeeiO, nof, nof1, page, qxxe(), qxx(), qyye(), qyy(), qzze(), qzz(), i, a)
IF nofloor / 2 = ww THEN
LINE (qzze(i + 3), 410)-(qzzl(i + 3), 415), , BF
END IF
COLOR 15
ELSEIF page >=2 AND PAGE1>2 AND a<=nofloor AND nofloor/2 <>ww THEN
COLOR 15
2345 CALL keyin(MINKEY(), MAXKEY(), EXTMINKEY(), EXTMAXKEY(), SPECIALKEYS$, EXTSPECIALKEYS$, CAPSON(), CALLER, XFLD, YFLD, LNGTH, TRUE, FALSE, c$)
IF ASC(c$) = 27 THEN
CLOSE
GOTO 10000
END IF
ELSEIF page = 1 AND ASC(c$) = 75 AND t <> 0 THEN
GOTO 10
ELSEIF ASC(c$) = 75 THEN
t = t - 1
page = page - 1
'new'
ELSEIF page >= 1 AND ASC(c$) = 75 AND t <> 0 THEN
GOTO 10
ELSEIF page = 1 AND ASC(c$) = 75 AND t <> 0 THEN
GOTO 77
ELSEIF ASC(c$) = 77 THEN
GOTO 777
ELSEIF ASC(c$) = 80 THEN
page = page
PAGE1 = PAGE1 + 1
IF PAGE1 = 2 THEN
GOTO 81
ELSEIF PAGE1 = 1 THEN
GOTO 888
ELSEIF PAGE1 > 2 THEN
GOTO 999
END IF
ELSEIF ASC(c$) = 72 THEN
PAGE1 = PAGE1 - 1
IF a < nofloor THEN
a = a - 4
cc = cc - 4
ELSEIF a >= nofloor THEN
a = a - 2
cc = cc - 2
END IF
IF PAGE1 < 0 OR a < 0 THEN
GOTO 10000
ELSEIF PAGE1 = 1 OR a = 1 THEN
GOTO 889
ELSEIF PAGE1 = 0 OR a = 1 THEN
GOTO 110
ELSEIF PAGE1 = 2 OR a = 2 THEN
GOTO 81
ELSEIF a > 2 THEN
GOTO 999
END IF
END IF

LINE (0, 0)-(522, 0)
LINE (0, 432)-(522, 432)
IF bar = 1 THEN
FOR i = 0 TO 520 STEP 40
LINE (i, 0)-(i + 1, 432), , BF
NEXT
END IF
GOTO 10000

81 a = 2
VIEW (100, 30)-(621, 479): CLS 1
LOCATE 5, 1
PRINT , TAB(480); "";
PRINT , TAB(480); "";
cc = 15
FOR j = 5 TO 33 STEP 16
COLOR 13
LOCATE (4 + j), 1
PRINT , TAB(480); a; "th TO", TAB(480); a + 1; "th FLOOR";
TAB(480); ""
COLOR 3
LOCATE (8 + j), 1
PRINT , TAB(480); cc;
COLOR 15
PRINT "Frc Cols/ "; TAB(480); "Walls "; TAB(480); ""
LOCATE (12 + j), 1
cc = cc + 1
COLOR 3
PRINT , TAB(480); cc;
COLOR 15
PRINT a + 1; "th Flr"; TAB(480); "Frc Slab/",
TAB(480); "Beams"; TAB(480); "
TAB(480); ""; TAB(480);""
LOCATE (17 + j), 1

cc = cc + 1
COLOR 3
PRINT , TAB(480); cc;
COLOR 15
PRINT "Frc Stair"; TAB(480); " ";
TAB(480); " ";
cc = cc - 1
a = a + 1
NEXT
IF a = nofloor - 1 THEN
COLOR 13
LOCATE 41, 1
PRINT , TAB(480); a; "th TO"; TAB(480); " ROOF ";
TAB(480); " ";
COLOR 3
LOCATE 45, 1
PRINT , TAB(480); cc;
COLOR 15
PRINT "Frc Cols/ "; TAB(480); " Walls ";
TAB(480); " ";
LOCATE 49, 1
cc = cc + 1
COLOR 3
PRINT , TAB(480); cc;
COLOR 15
PRINT a + 1; "th Flr"; TAB(480); " Frc Slab/",
TAB(480); " Beams"; TAB(480); " ";
LOCATE 54, 1
PRINT " "; TAB(480); " ";
LOCATE 56, 1
PRINT " "; TAB(480); " ";
cc = cc + 1
a = a + 1
ELSEIF a < nofloor - 1 THEN
COLOR 13
LOCATE 41, 1
PRINT , TAB(480); a; "th TO"; TAB(480); a + 1; "th FLOOR ";
TAB(480); " ";
COLOR 3
LOCATE 45, 1
PRINT , TAB(480); cc;
COLOR 15
PRINT "Frc Cols/ "; TAB(480); " Walls "; TAB(480); " ";
LOCATE 49, 1
cc = cc + 1
COLOR 3
PRINT , TAB(480); cc;
COLOR 15
PRINT a + 1; "th Flr"; TAB(480); " Frc Slab/",
TAB(480); " Beams"; TAB(480); " ";
TAB(480); " ";
LOCATE 54, 1
cc = cc + 1
COLOR 3
PRINT , TAB(480); cc;
COLOR 15
PRINT "Frc Stair"; TAB(480); " ";
TAB(480); " ";
A14-44
LOCATE 56, 1
PRINT " " ; TAB(480); " "
cc = cc + 1
a = a + 1
END IF
LINE (0, 0)-(522, 0)
LINE (0, 432)-(522, 432)
IF bar = 1 THEN
FOR i = 0 TO 520 STEP 40
LINE (i, 0)-(i + 1, 432), , BF
NEXT
END IF
IF page = 1 AND PAGE1 = 2 AND a <= nofloor-1 OR nofloor/2=ww THEN
CALL plp12(gxxee(), gxxe1(), page, nof, nofl, qxse(), qx(), qyye(), qyy(), qzze(), qzz(), hj1)
ELSEIF page = 1 AND PAGE1 = 2 AND a <= nofloor - 1 AND nofloor / 2 <> ww THEN
CALL plp2(gxxe(), gxxl(), gyye(), gyy1(), gzze(), gzzl(), hj1)
ELSEIF page = 1 AND PAGE1 > 2 AND a < nofloor - 1 AND nofloor / 2 <> ww THEN
CALL plp2g(gxxe(), gxxl(), gyye(), gyy1(), gzze(), gzzl(), i, a)
ELSEIF page = 1 AND PAGE1 > 2 AND a <= nofloor - 1 AND nofloor / 2 = ww THEN
CALL plp2g(gxxe(), gxxl(), gyye(), gyy1(), gzze(), gzzl(), i, a)
ELSEIF page >= 2 AND PAGE1 = 2 AND a < nofloor - 1 THEN
i = a + 1
CALL p2p12(qxxe(), qx(), qyye(), qyy(), qzze(), qzz(), i, a)
ELSEIF page >= 2 AND PAGE1 = 2 AND a >= nofloor - 1 THEN
CALL p2p22(gxxee(), gxxe1(), nof, nofl, page, qxse(), qx(), qyye(), qyy(), qzze(), qzz(), i, a)
END IF
CALL keyin(MINKEY(), MAXKEY(), EXTMINKEY(), EXTMAXKEY(), SPECIALKEYS(), EXTSPECIALKEYS(), CAPSON(), CALLER, XFLD, YFLD, LENGTH, TRUE, FALSE, c$)
IF ASC(c$) = 27 THEN
CLOSE
GOTO 10000
END IF
IF a > nofloor AND ASC(c$) = 80 OR t < 0 THEN
GOTO 10000
ELSEIF ASC(c$) = 75 THEN
t = t - 1
page = page - 1
"A14-45"
IF PAGE1 >= nofloor - 4 THEN
 tuf = tuf - 1
END IF

IF page = 0 OR PAGE1 < 0 OR t < 0 THEN
 GOTO 10000
END IF
GOTO 77

ELSEIF ASC(c$) = 77 THEN
 GOTO 777
ELSEIF ASC(c$) = 80 THEN
 PAGE1 = PAGE1 + 1
 cc = cc - 3
 GOTO 999
ELSEIF ASC(c$) = 72 THEN
 PAGE1 = PAGE1 - 1
 IF PAGE1 < 0 OR a < 0 THEN
 GOTO 10000
 ELSEIF PAGE1 = 1 THEN
 GOTO 889
 ELSEIF PAGE1 = 0 THEN
 GOTO 110
 ELSEIF PAGE1 = 1 AND page = 2 THEN
 GOTO 889
 ELSE
 a = a - 4
 IF a < 0 THEN
 GOTO 10000
 ELSE
 GOTO 999
 END IF
 END IF
END IF

1000 IF ASC(c$) = 27 THEN
 CLOSE
END IF
10000 CLOSE
END

SUB AL (c$, page, oh, op, i, nof, gig, gxxee(), gxxle(),
 fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, axee(),
 axx(), afin1(), afin2(), afin3(), afin4(), afin5(), afin6(),
 afin7(), afin8(), afin9(), afin10(), aser1(), aser2(),
 aser3(), aser4(), aser5(), aser6(), uyu, tete, t, gigl, ece,
 dede, yeni, gxxeei(), gxxlei(), axeei(), axxi(), tete1,
 muratl, uyul, nofl, murat, kesin, yesin) STATIC

 ohh = oh
 opp = op
 COLOR 5
IF i <= nof + 3 AND op <= oh AND opp <= ohh AND op = 0 AND gig = i AND murat = 0 AND tete = 1 THEN
LINE (gxxee(4), 205)-(gxxee(4), 210), , BF
IF gxxee(4) > 480 THEN
po = gxxee(4)
DO UNTIL po < 480
po = po - 480
LOOP
END IF
COLOR 14
LINE (po, 195)-(po + 2, 205), , BF
COLOR 5
CALL coll(gxseei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxsee())
murat = 1 ELSEIF i >= nof + 3 AND oh > op AND op <> 0 AND ohh > opp AND gig >= i AND murat = 0 AND tete = 1 THEN
IF gxxee(4) > 480 THEN
po = gxxee(4)
DO UNTIL po < 480
po = po - 480
LOOP
END IF
COLOR 14
LINE (po, 195)-(po + 2, 205), , BF
COLOR 5
LINE (po, 205)-(gxelle(4), 210), , BF
CALL coll(gxseei(), c$, age, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxee())
tete = 1 ELSEIF i >= nof + 3 AND oh = op AND ohh = opp AND op = 0 AND gig >= i AND tete = 0 THEN
LINE (axee(i + 1), 205)-(axx(i + 1), 210), , BF
tete = 1 CALL coll(gxseei(), c$, age, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxsee()) ELSEIF i <= nof + 3 AND oh = op AND opp = 0 AND gig > i AND t <> 0 AND murat = 0 AND tete = 0 THEN
LINE (axee(i + 1), 205)-(axx(i + 1), 210), , BF CALL coll(gxseei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxsee()) ELSEIF i >= nof + 3 AND oh = op AND oh <> 0 AND ohh = opp AND gig >= i AND murat = 0 AND tete = 1 THEN
LINE (axee(i + 1), 205)-(axx(i + 1), 210), , BF CALL coll(gxseei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxsee()) ELSEIF i >= nof + 3 AND oh = op AND ohh = opp AND op = 0 AND gig >= i AND tete = 0 THEN
LINE (gxsee(4), 205)-(gxelle(4), 210), , BF IF gxxee(4) > 480 THEN
po = gxxee(4)
DO UNTIL po < 480
po = po - 480
LOOP
END IF
COLOR 14
LINE (po, 195)-(po + 2, 205), , BF
COLOR 5
A14-47
CALL coll(gxxeex(), c$, age, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxee())
tete = 1
ELSEIF i >= nof + 3 AND oh > op AND op <> 0 AND ohh > opp
AND gig >= i AND murat = 0 AND tete = 1 THEN
LINE (gxxee(4), 205)-(gxxle(4), 210), , BF
IF gxxee(4) > 480 THEN
po = gxxee(4)
DO UNTIL po < 480
po = po - 480
LOOP
END IF
COLOR 14
LINE (po, 195)-(po + 2, 205), , BF
COLOR 5
CALL coll(gxxeeex(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxee())
 tete = 1
ELSEIF i >= nof + 3 AND oh > op AND op = 0 AND ohh > opp
AND gig >= i AND uyu >= op AND murat = 0 AND tete = 0 AND t = 0 THEN
LINE (gxxee(4), 205)-(gxxle(4), 210), , BF
IF gxxee(4) > 480 THEN
po = gxxee(4)
DO UNTIL po < 480
po = po - 480
LOOP
END IF
COLOR 14
LINE (po, 195)-(po + 2, 205), , BF
COLOR 5
CALL coll(gxxeeex(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxee())
ELSEIF i >= nof + 3 AND oh >= opp AND gig >= i
AND murat = 0 AND tete = 0 AND kesin < yesin AND t = 0 THEN
LINE (gxxee(4), 205)-(gxxle(4), 210), , BF
IF gxxee(4) > 480 THEN
po = gxxee(4)
DO UNTIL po < 480
po = po - 480
LOOP
END IF
COLOR 14
LINE (po, 195)-(po + 2, 205), , BF
COLOR 5
CALL coll(gxxeeex(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxee())
 ELSEIF i >= nof + 3 AND oh > op AND gig >= i
AND murat = 0 AND tete = 0 AND kesin = yesin AND t = 0 THEN
LINE (gxxee(4), 205)-(gxxle(4), 210), , BF
IF gxxee(4) > 480 THEN
po = gxxee(4)
DO UNTIL po < 480
po = po - 480
LOOP
A14-48
COLOR 14
LINE (po, 195)-(po + 2, 205), , BF
COLOR 5
CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxee())
ELSEIF i >= nof + 3 AND oh > op AND op <> 0 AND ohh > opp AND gig >= i AND kesin >= yesin AND murat = 0 AND tete = 0 THEN
LINE (gxxee(4), 205)-(gxxle(4), 210), , BF
IF gxxee(4) > 480 THEN
po = gxxee(4)
DO UNTIL po < 480
po = po - 480
LOOP
END IF
COLOR 14
LINE (po, 195)-(po + 2, 205), , BF
COLOR 5
CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxee())
ELSEIF i >= nof + 3 AND oh = op + 1 AND op <> 0 AND ohh = opp + 1 AND gig >= i AND kesin = yesin - 1 AND murat = 0 AND tete = 0 THEN
LINE (gxxee(4), 205)-(gxxle(4), 210), , BF
IF gxxee(4) > 480 THEN
po = gxxee(4)
DO UNTIL po < 480
po = po - 480
LOOP
END IF
COLOR 14
LINE (po, 195)-(po + 2, 205), , BF
COLOR 5
CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxee())
ELSEIF i >= nof + 3 AND oh >= op AND op <> 0 AND ohh >= opp AND gig >= i AND t = 0 AND murat = 0 AND tete = 0 THEN
LINE (gxxee(4), 205)-(gxxle(4), 210), , BF
IF gxxee(4) > 480 THEN
po = gxxee(4)
DO UNTIL po < 480
po = po - 480
LOOP
END IF
COLOR 14
LINE (po, 195)-(po + 2, 205), , BF
COLOR 5
CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxee())
ELSEIF i >= nof + 3 AND oh > op AND ohh > opp AND gig >= i AND murat = 0 AND tete = 0 THEN
LINE (axee(i + 1), 205)-(axx(i + 1), 210), , BF
CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxee())
ELSEIF i >= nof + 3 AND oh > op AND op = 0 AND ohh > opp AND gig >= i AND murat = 0 AND tete = 0 AND uyu <= op AND t <> 0 THEN
LINE (axx(i + 1), 205)-(axx(i + 1), 210), , BF
CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxee())
 uyu = uyu + 1
 ELSEIF i >= nof + 3 AND oh >= op AND op <> 0 AND ohh >= opp
 AND gig >= i AND t <> 0 AND murat = 0 AND tete = 0 AND t <> 0
 THEN
 LINE (axx(i + 1), 205)-(axx(i + 1), 210), , BF
 CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxee())
 ELSEIF i >= nof + 3 AND oh > op AND op <> 0 AND ohh > opp
 AND gig >= i AND murat = 0 AND tete = 0 AND t <> 0
 THEN
 LINE (axx(i + 1), 205)-(axx(i + 1), 210), , BF
 CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxee())
 ELSEIF i >= nof + 3 AND oh = op AND ohh = opp
 AND gig >= i AND murat = 0 AND tete = 0 AND t <> 0
 THEN
 LINE (axx(i + 1), 205)-(axx(i + 1), 210), , BF
 CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxee())
 ELSEIF i >= nof + 3 AND oh = op AND ohh > opp
 AND gig > i THEN
 LINE (axx(i + 1), 205)-(axx(i + 1), 210), , BF
 CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxee())
 ELSEIF i >= nof + 3 AND oh = op AND ohh = opp
 AND gig = i AND murat = 0 AND tete = 0 AND t <> 0
 THEN
 LINE (axx(i + 1), 205)-(axx(i + 1), 210), , BF
 CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxee())
 ELSEIF i <= nof + 3 AND op <= oh AND opp <= ohh AND gig > i
 THEN
 LINE (axx(i + 1), 205)-(axx(i + 1), 210), , BF
 CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxee())
 IF gig1 = i AND murat1 = 0 AND tete1 = 1 THEN
 LINE (gxxeei(4), 175)-(gxxlei(4), 180), , BF
 IF gxxeei(4) > 480 THEN
 poi = gxxeei(4)
 DO UNTIL poi < 480
 poi = poi - 480
 LOOP
 END IF
 COLOR 9
 LINE (poi, 165)-(poi + 2, 180), , BF
 COLOR 5
 murat1 = 1
 CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxee())
 ELSEIF i >= nof + 3 AND oh = op AND ohh = opp AND op = 0
 AND gig1 >= i AND tete1 = 0 THEN
 LINE (gxxeei(4), 175)-(gxxlei(4), 180), , BF
 A14-50
IF gxxeei(4) > 480 THEN
 poi = gxxeei(4)
 DO UNTIL poi < 480
 poi = poi - 480
 LOOP
END IF

COLOR 9
LINE (poi, 165)-(poi + 2, 180), , BF
COLOR 5
 tetel = 1
 CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxeei())
 ELSEIF i >= nofl + 3 AND oh > op AND op <> 0 AND ohh > opp
 AND gigl >= i AND murat1 = 0 AND tetel = 1 THEN
 IF gxxeei(4) > 480 THEN
 poi = gxxeei(4)
 DO UNTIL poi < 480
 poi = poi - 480
 LOOP
 END IF
 COLOR 9
 LINE (poi, 165)-(poi + 2, 180), , BF
 COLOR 5
 LINE (poi, 175)-(gxxlei(4), 180), , BF
 tetel = 1
 CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxeei())
 ELSEIF i >= nofl + 3 AND oh > op AND op = 0 AND ohh > opp
 AND gigl >= i AND uyul >= op AND murat1 = 0 AND tetel = 0 AND t = 0 THEN
 LINE (gxxeei(4), 175)-(gxxlei(4), 180), , BF
 IF gxxeei(4) > 480 THEN
 poi = gxxeei(4)
 DO UNTIL poi < 480
 poi = poi - 480
 LOOP
 END IF
 COLOR 9
 LINE (poi, 165)-(poi + 2, 180), , BF
 COLOR 5
 CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxeei())
 ELSEIF i >= nofl + 3 AND oh >= op AND ohh > opp
 AND gigl >= i AND uyul >= op AND murat1 = 0 AND tetel = 0 AND t = 0 THEN
 LINE (gxxeei(4), 175)-(gxxlei(4), 180), , BF
 IF gxxeei(4) > 480 THEN
 poi = gxxeei(4)
 DO UNTIL poi < 480
 poi = poi - 480
 LOOP
 END IF
 COLOR 9
 LINE (poi, 165)-(poi + 2, 180), , BF
 COLOR 5
 CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxeei())

A14-51
ELSEIF i >= nofl + 3 AND oh > op AND op = 0 AND ohh > opp AND gigl >= i AND kesin = yesin AND uyul > op AND muratl = 0 AND tetel = 0 AND t = 0 THEN
 LINE (gxxeei(4), 175)-(gxxle(4), 180), , BF
IF gxxeei(4) > 480 THEN
 poi = gxxeei(4)
DO UNTIL poi < 480
 poi = poi - 480
END LOOP
END IF
COLOR 9
LINE (poi, 165)-(poi + 2, 180), , BF
COLOR 5
CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxeei())
ELSEIF i >= nofl + 3 AND oh > op AND op <> 0 AND ohh > opp AND gigl >= i AND kesin = yesin - 1 AND muratl = 0 AND tetel = 0 AND t = 0 THEN
 LINE (gxxeei(4), 175)-(gxxle(4), 180), , BF
IF gxxeei(4) > 480 THEN
 poi = gxxeei(4)
DO UNTIL poi < 480
 poi = poi - 480
END LOOP
END IF
COLOR 9
LINE (poi, 165)-(poi + 2, 180), , BF
COLOR 5
CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxeei())
ELSEIF i >= nofl + 3 AND oh >= op AND op <> 0 AND ohh = opp + 1 AND gigl >= i AND kesin = yesin - 1 AND muratl = 0 AND tetel = 0 AND t = 0 THEN
 LINE (gxxeei(4), 175)-(gxxle(4), 180), , BF
IF gxxeei(4) > 480 THEN
 poi = gxxeei(4)
DO UNTIL poi < 480
 poi = poi - 480
END LOOP
END IF
COLOR 9
LINE (poi, 165)-(poi + 2, 180), , BF
COLOR 5
CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxeei())
ELSEIF i >= nofl + 3 AND oh >= op AND op <> 0 AND ohh >= opp AND gigl >= i AND t = 0 AND muratl = 0 AND tetel = 0 THEN
 LINE (gxxeei(4), 175)-(gxxle(4), 180), , BF
IF gxxeei(4) > 480 THEN
 poi = gxxeei(4)
DO UNTIL poi < 480
 poi = poi - 480
END LOOP
END IF
COLOR 9
LINE (poi, 165)-(poi + 2, 180), , BF
COLOR 5
CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxee())
ELSEIF i >= nofl + 3 AND oh > op AND ohh > opp AND gigl >= i AND muratl = 0 AND tetel = 1 AND t <> 0 THEN
 LINE (axeei(i + 1), 175)-(axxi(i + 1), 180), , BF
CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxee())
ELSEIF i >= nofl + 3 AND oh > op AND op = 0 AND ohh > opp AND gigl >= i AND muratl = 0 AND tetel = 0 AND uyul <= op AND t <> 0 THEN
 LINE (axeei(i + 1), 175)-(axxi(i + 1), 180), , BF
 uyul = uyul + 1
CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxee())
ELSEIF i >= nofl + 3 AND oh >= op AND op <> 0 AND ohh = opp AND gigl >= i AND t <> 0 AND muratl = 0 AND tetel = 0 THEN
 LINE (axeei(i + 1), 175)-(axxi(i + 1), 180), , BF
CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxee())
ELSEIF i >= nofl + 3 AND oh = op AND ohh = opp AND gigl >= i AND t <> 0 THEN
 LINE (axeei(i + 1), 175)-(axxi(i + 1), 180), , BF
CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxee())
ELSEIF i >= nofl + 3 AND oh > op AND opp < ohh AND gigl < i THEN
 LINE (axeei(i - 1), 175)-(axxi(i - 1), 180), , BF
CALL coll(gxxeei(), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxee())
END IF
COLOR 15
END SUB
COLOR 5
LINE (gxxee(4), 205)-(gxxle(4), 210), , BF
IF gxxee(4) > 480 THEN
po = gxxee(4)
DO UNTIL po < 480
po = po - 480
LOOP
END IF
COLOR 14
LINE (po, 195)-(po + 2, 205), , BF
COLOR 4
LINE (fin1, 205)-(fin1 + 1, 290), , BF
LINE (fin3, 205)-(fin3 + 1, 308), , BF
LINE (fin5, 205)-(fin5 + 1, 326), , BF
LINE (fin7, 205)-(fin7 + 1, 344), , BF
LINE (fin9, 205)-(fin9 + 1, 362), , BF
LINE (ser1, 205)-(ser1 + 1, 390), , BF
LINE (ser3, 205)-(ser3 + 1, 408), , BF
LINE (ser5, 205)-(ser5 + 1, 424), , BF
COLOR 15
END SUB

SUB coll (gxxee(4), c$, page, fin1, fin3, fin5, fin7, fin9, ser1, ser3, ser5, gxxee()) STATIC
IF gxxee(4) > 480 * (page - 2) AND gxxee(4) < 480 * (page - 1) THEN
 po = gxxee(4)
 DO UNTIL po < 480
 po = po - 480
 LOOP
 COLOR 14
 LINE (po, 195)-(po + 2, 205), , BF
END IF
COLOR 5
IF gxxeei(4) > 480 * (page - 2) AND gxxeei(4) < 480 *(page-1) THEN
 poi = gxxeei(4)
 DO UNTIL poi < 480
 poi = poi - 480
 LOOP
 COLOR 9
 LINE (poi, 165)-(poi + 2, 180), , BF
END IF
IF finl > gxxee(4) + 480 * (Ml + 1) THEN
LINE (0, 0)-(0, 0)
ELSEIF Fl = 1 AND finl < 480 * page AND ASC(c$) <> 75 THEN
LINE (0, 0)-(0, 0)
ELSEIF finl <= 480 *(page-1) AND finl >= 480 * (page -2)THEN
 IF ffl = 0 OR ASC(c$) = 75 THEN
 ffl = finl
 IF ffl > 480 THEN
 DO UNTIL ffl < 480
 ffl = ffl - 480
 LOOP
 END IF
 LINE (ffl, 205)-(ffl + 1, 290), , BF
 END IF
 ELSE
 ffl = finl
 IF ffl > 480 THEN
 DO UNTIL ffl < 480
 ffl = ffl - 480
 LOOP
 END IF
 LINE (ffl, 205)-(ffl + 1, 290), , BF
 END IF
ELSE
 LINE (0, 0)-(0, 0)
END IF
IF PAGE1 = page THEN
 Ml = Ml + 1
END IF
PAGE1 = page + 1
IF fin3 > gxxee(4) + 480 * (M3 + 1) THEN
LINE (0, 0)-(0, 0)
ELSEIF F3 = 1 AND fin3 < 480 * page AND ASC(c$) <> 75 THEN
A14-55
ELSEIF fin3 <= 480 * (page - 1) AND fin3 >= 480 * (page - 2) THEN
 IF ff3 = 0 OR ASC(c$) = 75 THEN
 ff3 = fin3
 IF ff3 > 480 THEN
 DO UNTIL ff3 < 480
 ff3 = ff3 - 480
 LOOP
 END IF
 LINE (ff3, 205)-(ff3 + 1, 318), , BF
 END IF
 ELSE
 ff3 = fin3
 IF ff3 > 480 THEN
 DO UNTIL ff3 < 480
 ff3 = ff3 - 480
 LOOP
 END IF
 ELSEIF fin3 <= 480 * (page - 1) AND fin3 >= 480 * (page - 2) AND ff3 <> 0 THEN
 LINE (ff3, 205)-(ff3 + 1, 318), , BF
 F3 = 1
 ELSEIF fin3 <= 480 * (page) AND fin3 >= 480 * (page - 1) AND ASC(c$) = 80 THEN
 LINE (ff3, 205)-(ff3 + 1, 318), , BF
 END IF
 ELSE
 LINE (0, 0)-(0, 0)
 END IF
 END IF
 END IF
ELSEIF page3 = page THEN
 M3 = M3 + 1
 END IF
 page3 = page + 1
 IF fin5 > gxxee(4) + 480 * (M5 + 1) THEN
 LINE (0, 0)-(0, 0)
 ELSEIF F5 = 1 AND fin5 < 480 * page AND ASC(c$) <> 75 THEN
 LINE (0, 0)-(0, 0)
 ELSEIF fin5 <= 480 * (page - 1) AND fin5 >= 480 * (page - 2) THEN
 IF ff5 = 0 OR ASC(c$) = 75 THEN
 ff5 = fin5
 IF ff5 > 480 THEN
 DO UNTIL ff5 < 480
 ff5 = ff5 - 480
 LOOP
 END IF
 LINE (ff5, 205)-(ff5 + 1, 326), , BF
 END IF
 ELSE
 ff5 = fin5
 IF ff5 > 480 THEN
 DO UNTIL ff5 < 480
 ff5 = ff5 - 480
 LOOP
 END IF
 ELSEIF fin5 <= 480 * (page - 1) AND fin5 >= 480 * (page - 2) THEN
 LINE (ff5, 205)-(ff5 + 1, 326), , BF
 F5 = 1
 ELSE
 LINE (0, 0)-(0, 0)
 END IF
 END IF

A14-56
ELSEIF fin5 <= 480 * (page) AND fin5 >= 480 * (page - 1)
AND ASC(c$) = 80 THEN
LINE (ff5, 205)-(ff5 + 1, 326), , BF
END IF
ELSE
LINE (0, 0)-(0, 0)
END IF
END IF
ELSE
LINE (0, 0)-(0, 0)
END IF
END IF
IF page5 = page THEN
M5 = M5 + 1
END IF
page5 = page + 1
IF fin7 > gxxee(4) + 480 * (M7 + 1) THEN
LINE (0, 0)-(0, 0), , BF
ELSEIF F7 = 1 AND fin7 < 480 * page AND ASC(c$) <> 75 THEN
LINE (0, 0)-(0, 0)
ELSEIF fin7 <= 480 * (page - 1) AND fin7 >= 480 * (page - 2) THEN
IF ff7 = 0 OR ASC(c$) = 75 THEN
ff7 = fin7
IF ff7 > 480 THEN
DO UNTIL ff7 < 480
ff7 = ff7 - 480
LOOP
END IF
LINE (ff7, 205)-(ff7 + 1, 344), , BF
END IF
ELSE
ff7 = fin7
IF ff7 > 480 THEN
DO UNTIL ff7 < 480
ff7 = ff7 - 480
LOOP
IF fin7 <= 480 * (page - 1) AND fin7 >= 480 * (page - 2) THEN
LINE (ff7, 205)-(ff7 + 1, 344), , BF
F7 = 1
ELSEIF fin7 <= 480 * (page) AND fin7 >= 480 * (page - 1) AND
ASC(c$) = 80 THEN
LINE (ff7, 205)-(ff7 + 1, 344), , BF
END IF
ELSE
LINE (0, 0)-(0, 0)
END IF
END IF
ELSEIF page7 = page THEN
M7 = M7 + 1
END IF
page7 = page + 1
IF fin9 > gxxee(4) + 480 * (M9 + 1) THEN
LINE (0, 0)-(0, 0)
ELSEIF F9 = 1 AND fin9 < 480 * page AND ASC(c$) <> 75 THEN
LINE (0, 0)-(0, 0)
ELSEIF fin9 <= 480 * (page - 1) AND fin9 >= 480 * (page - 2) THEN
IF ff9 = 0 OR ASC(c$) = 75 THEN
ff9 = fin9
IF ff9 > 480 THEN
DO UNTIL ff9 < 480
A14-57
ff9 = ff9 - 480
LOOP
END IF
LINE (ff9, 205)-(ff9 + 1, 362), , BF
END IF

ELSE
ff9 = fin9
IF ff9 > 480 THEN
DO UNTIL ff9 < 480
ff9 = ff9 - 480
LOOP
END IF
IF fin9 <= 480 * (page - 1) AND fin9 >= 480 * (page - 2) THEN
LINE (ff9, 205)-(ff9 + 1, 362), , BF
END IF
ELSEIF fin9 <= 480 * (page) AND fin9 >= 480 * (page - 1) AND
ASC(c$) = 80 THEN
LINE (ff9, 205)-(ff9 + 1, 362), , BF
END IF
ELSE
LINE (0, 0)-(0, 0)
END IF
END IF

END IF

IF page9 = page THEN
M9 = M9 + 1
END IF
page9 = page + 1
IF serl > gxxex(4) + 480 * (MSI + 1) THEN
LINE (0, 0)-(0, 0)
ELSEIF SI = 1 AND serl < 480 * page AND ASC(c$) <> 75 THEN
LINE (0, 0)-(0, 0)
ELSEIF serl <= 480 * (page - 1) AND serl >= 480 * (page - 2)
THEN
IF ssl = 0 OR ASC(c$) = 75 THEN
ssl = serl
IF ssl > 480 THEN
DO UNTIL ssl < 480
ssl = ssl - 480
LOOP
END IF
LINE (ssl, 205)-(ssl + 1, 390), , BF
END IF
ELSE
ssl = serl
IF ssl > 480 THEN
DO UNTIL ssl < 480
ssl = ssl - 480
LOOP
END IF
LINE (ssl, 205)-(ssl + 1, 390), , BF
END IF
ELSE
LINE (0, 0)-(0, 0)
END IF
END IF
IF pags1 = page THEN
MS1 = MS1 + 1
END IF
pags1 = page + 1
IF ser3 > gxxee(4) + 480 * (MS3 + 1) THEN
LINE (0, 0)-(0, 0)
ELSEIF S3 = 1 AND ser3 < 480 * page AND ASC(c$) <> 75 THEN
LINE (0, 0)-(0, 0)
ELSEIF ser3 <= 480 * (page - 1) AND ser3 >= 480 * (page - 2) THEN
IF ss3 = 0 OR ASC(c$) = 75 THEN
ss3 = ser3
IF ss3 > 480 THEN
DO UNTIL ss3 < 480
ss3 = ss3 - 480
LOOP
END IF
LINE (ss3, 205)-(ss3 + 1, 408), , BF
END IF
ELSE
ss3 = ser3
IF ss3 > 480 THEN
DO UNTIL ss3 < 480
ss3 = ss3 - 480
LOOP
END IF
IF ser3 <= 480 * (page - 1) AND ser3 >= 480 * (page - 2) THEN
LINE (ss3, 205)-(ss3 + 1, 408), , BF
S3 = 1
ELSEIF ser3 <= 480 * (page) AND ser3 >= 480 * (page - 1) AND ASC(c$) = 80 THEN
LINE (ss3, 205)-(ss3 + 1, 408), , BF
END IF
ELSE
LINE (0, 0)-(0, 0)
END IF
END IF
IF pags3 = page THEN
MS3 = MS3 + 1
END IF
pags3 = page + 1
IF ser5 > gxxee(4) + 480 * (MS5 + 1) THEN
LINE (0, 0)-(0, 0)
ELSEIF S5 = 1 AND ser5 < 480 * page AND ASC(c$) <> 75 THEN
LINE (0, 0)-(0, 0)
ELSEIF ser5 <= 480 * (page - 1) AND ser5 >= 480 * (page - 2) THEN
IF ss5 = 0 OR ASC(c$) = 75 THEN
ss5 = ser5
IF ss5 > 480 THEN
DO UNTIL ss5 < 480
ss5 = ss5 - 480
LOOP
END IF
LINE (ss5, 205)-(ss5 + 1, 424), , BF
END IF
ELSE
ss5 = ser5
IF ss5 > 480 THEN

A14-59
DO UNTIL ss5 < 480
 ss5 = ss5 - 480
LOOP
IF ser5 <= 480 * (page - 1) AND ser5 >= 480 * (page - 2) THEN
 LINE (ss5, 205)-(ss5 + 1, 424), , BF
 SS5 = 1
ELSEIF ser5 <= 480 * (page) AND ser5 >= 480 * (page - 1) AND
 ASC(c$) = 80 THEN
 LINE (ss5, 205)-(ss5 + 1, 424), , BF
 END IF
ELSE
 LINE (0, 0)-(0, 0)
END IF
END IF
IF pags5 = page THEN
 MS5 = MS5 + 1
END IF
pags5 = page + 1

END SUB
SUB gigi (fin1, FIN2, fin3, fin4, fin5, fin6, fin7, fin8, fin9, fin10, ser1, ser2, ser3, ser4, ser5, ser6, afin1(), afin2(), afin3(), afin4(), afin5(), afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(), aser3(), aser4(), aser5(), aser6(), t, jf1, jf3, jf5, jf7, jf9, js1, js3, js5, gig) STATIC

IF fin1 >= 480 * t THEN
 afin1(gig) = fin1 - 480 * t
 jf1 = t + 1
 DO WHILE afin1(gig) >= 480 * jf1
 afin1(gig) = afin1(gig) - 480 * jf1
 jf1 = jf1 + 1
 LOOP
 afin2(gig) = FIN2 - 480 * t
ELSEIF fin1 < 480 * t AND FIN2 >= 480 * t THEN
 afin1(gig) = fin1 - 480 * t
 afin2(gig) = FIN2 - 480 * t
ELSEIF FIN2 < 480 * t THEN
 afin1(gig) = 0
 afin2(gig) = 0
END IF

IF fin3 >= 480 * t THEN
 afin3(gig) = fin3 - 480 * t
 jf3 = t + 1
 DO WHILE afin3(gig) >= 480 * jf3
 afin3(gig) = afin3(gig) - 480 * jf3
 jf3 = jf3 + 1
 LOOP
 afin4(gig) = fin4 - 480 * t
ELSEIF fin3 < 480 * t AND fin4 >= 480 * t THEN
 afin3(gig) = fin3 - 480 * t
 afin4(gig) = fin4 - 480 * t
ELSEIF fin4 < 480 * t THEN
 afin3(gig) = 0
 afin4(gig) = 0
END IF

IF fin5 >= 480 * t THEN
 afin5(gig) = fin5 - 480 * t
 jf5 = t + 1
 DO WHILE afin5(gig) >= 480 * jf5
 afin5(gig) = afin5(gig) - 480 * jf5
 jf5 = jf5 + 1
 LOOP
 afin6(gig) = fin6 - 480 * t
ELSEIF fin5 < 480 * t AND fin6 >= 480 * t THEN
 afin5(gig) = fin5 - 480 * t
 afin6(gig) = fin6 - 480 * t
ELSEIF fin6 < 480 * t THEN
 afin5(gig) = 0
 afin6(gig) = 0
END IF

IF fin7 >= 480 * t THEN
 afin7(gig) = fin7 - 480 * t
ELSEIF fin7 < 480 * t THEN
 afin7(gig) = 0
END IF
\(\text{afin7}(\text{gig}) = \text{fin7} - 480 \times t \)
\(\text{jf7} = t + 1 \)
DO WHILE \(\text{afin7}(\text{gig}) \geq 480 \times \text{jf7} \)
\(\text{afin7}(\text{gig}) = \text{afin7}(\text{gig}) - 480 \times \text{jf7} \)
\(\text{jf7} = \text{jf7} + 1 \)
LOOP
\(\text{afin8}(\text{gig}) = \text{fin8} - 480 \times t \)
ELSEIF \(\text{fin7} < 480 \times t \) AND \(\text{fin8} \geq 480 \times t \) THEN
\(\text{afin7}(\text{gig}) = \text{fin7} - 480 \times t \)
\(\text{afin8}(\text{gig}) = \text{fin8} - 480 \times t \)
ELSEIF \(\text{fin8} < 480 \times t \) THEN
\(\text{afin7}(\text{gig}) = 0 \)
\(\text{afin8}(\text{gig}) = 0 \)
END IF
IF \(\text{fin9} \geq 480 \times t \) THEN
\(\text{afin9}(\text{gig}) = \text{fin9} - 480 \times t \)
\(\text{jf9} = t + 1 \)
DO WHILE \(\text{afin9}(\text{gig}) \geq 480 \times \text{jf9} \)
\(\text{afin9}(\text{gig}) = \text{afin9}(\text{gig}) - 480 \times \text{jf9} \)
\(\text{jf9} = \text{jf9} + 1 \)
LOOP
\(\text{afin10}(\text{gig}) = \text{fin10} - 480 \times t \)
ELSEIF \(\text{fin9} < 480 \times t \) AND \(\text{fin10} \geq 480 \times t \) THEN
\(\text{afin9}(\text{gig}) = \text{fin9} - 480 \times t \)
\(\text{afin10}(\text{gig}) = \text{fin10} - 480 \times t \)
ELSEIF \(\text{fin10} < 480 \times t \) THEN
\(\text{afin9}(\text{gig}) = 0 \)
\(\text{afin10}(\text{gig}) = 0 \)
END IF
IF \(\text{ser1} \geq 480 \times t \) THEN
\(\text{aser1}(\text{gig}) = \text{ser1} - 480 \times t \)
\(\text{js1} = t + 1 \)
DO WHILE \(\text{aser1}(\text{gig}) \geq 480 \times \text{js1} \)
\(\text{aser1}(\text{gig}) = \text{aser1}(\text{gig}) - 480 \times \text{js1} \)
\(\text{js1} = \text{js1} + 1 \)
LOOP
\(\text{aser2}(\text{gig}) = \text{ser2} - 480 \times t \)
ELSEIF \(\text{ser1} < 480 \times t \) AND \(\text{ser2} \geq 480 \times t \) THEN
\(\text{aser1}(\text{gig}) = \text{ser1} - 480 \times t \)
\(\text{aser2}(\text{gig}) = \text{ser2} - 480 \times t \)
ELSEIF \(\text{ser2} < 480 \times t \) THEN
\(\text{aser1}(\text{gig}) = 0 \)
\(\text{aser2}(\text{gig}) = 0 \)
END IF
IF \(\text{ser3} \geq 480 \times t \) THEN
\(\text{aser3}(\text{gig}) = \text{ser3} - 480 \times t \)
\(\text{js3} = t + 1 \)
DO WHILE \(\text{aser3}(\text{gig}) \geq 480 \times \text{js3} \)
\(\text{aser3}(\text{gig}) = \text{aser3}(\text{gig}) - 480 \times \text{js3} \)
\(\text{js3} = \text{js3} + 1 \)
LOOP
\(\text{aser4}(\text{gig}) = \text{ser4} - 480 \times t \)
ELSEIF \(\text{ser3} < 480 \times t \) AND \(\text{ser4} \geq 480 \times t \) THEN
\(\text{aser3}(\text{gig}) = \text{ser3} - 480 \times t \)
\(\text{aser4}(\text{gig}) = \text{ser4} - 480 \times t \)
ELSEIF \(\text{ser4} < 480 \times t \) THEN
\(\text{aser3}(\text{gig}) = 0 \)
\(\text{aser4}(\text{gig}) = 0 \)
END IF
IF ser5 >= 480 * t THEN
 aser5(gig) = ser5 - 480 * t
 js5 = t + 1
 DO WHILE aser5(gig) >= 480 * js5
 aser5(gig) = aser5(gig) - 480 * js5
 js5 = js5 + 1
 LOOP
 aser6(gig) = ser6 - 480 * t
ELSEIF ser5 < 480 * t AND ser6 >= 480 * t THEN
 aser5(gig) = aser5(gig) - 480 * js5
 js5 = js5 - 1
ELSEIF ser6 < 480 * t THEN
 aser5(gig) = 0
 aser6(gig) = 0
END IF
END SUB
SUB gullu (aemel)
IF bjason = 0 THEN
LINE (0, 400)-(aemel, 405)
END IF
END SUB
SUB keyin (MINKEY(), MAXKEY(), EXTMINKEY(), EXTMAXKEY(), SPECIALKEY$(CALLER), EXTSPECIALKEY$(CALLER), CAPSON(), CALLER, XFLD, YFLD, LNGTH, TRUE, FALSE, c$)

26115 c$ = INKEY$
IF c$ = "" THEN 26115: 'WAIT FOR INPUT
C = ASC(c$)
IF LEN(c$) = 2 THEN EXTENDED = TRUE ELSE EXTENDED = FALSE
IF EXTENDED = FALSE THEN 26155
C$ = RIGHT$(c$, 1)
C = ASC(c$, 1)
GOTO 26205
26155 'ORDINARY ASCII CODES
'TEST FOR RANGE
IF c >= MINKEY(CALLER) AND c <= MAXKEY(CALLER) THEN 26185
'HANDLE SPECIAL CHARACTERS
IF SPECIALKEY$(CALLER) = " " THEN 26240: 'NO
IF INSTR(SPECIALKEY$(CALLER), c$) = 0 THEN 26240
26185 'CONVERT CAPITALS IF NECESSARY
IF CAPSON(CALLER) = FALSE THEN 26255
IF c > 96 AND c < 123 THEN c$ = CHR$(c AND 223)
GOTO 26255
26205 'EXTENDED ASCII CODES
'TEST FOR RANGE
IF c >= EXTMINKEY(CALLER) AND c <= EXTMINKEY(CALLER) THEN 26255
'HANDLE SPECIAL CHARACTERS
IF EXTSPECIALKEY$(CALLER) = " " THEN 26240
IF INSTR(EXTSPECIALKEY$(CALLER), c$) = 1 THEN 26240
GOTO 26255
IF ASC(c$) = 81 THEN 26240
IF ASC(c$) = 82 THEN 26240
IF ASC(c$) = 83 THEN 26240
IF ASC(c$) = 60 THEN 26240
IF ASC(c$) = 61 THEN 26240
IF ASC(c$) = 63 THEN 26240
IF ASC(c$) = 64 THEN 26240
IF ASC(c$) = 65 THEN 26240
IF ASC(c$) = 66 THEN 26240
IF ASC(c$) = 67 THEN 26240
IF ASC(c$) = 73 THEN 26240
IF ASC(c$) = 79 THEN 26240
IF ASC(c$) = 71 THEN 26240
GOTO 26255
26240 'ILLEGAL CHARACTER
BEEP
GOTO 26115: 'TRY AGAIN
26255 END SUB
SUB ngigi (fin1, FIN2, fin3, fin4, fin5, fin6, fin7, fin8, fin9, fin10, ser1, ser2, ser3, ser4, ser5, ser6, afin1(), afin2(), afin3(), afin4(), afin5(), afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(), aser3(), aser4(), aser5(), aser6(), t, jf1, jf3, jf5, jf7, jf9, js1, js3, js5, gig, nofloor) STATIC

FOR gig = nof + 3 TO nofloor + 4
IF fin1 >= 480 * t THEN
 afin1(gig) = fin1 - 480 * t
 jf1 = t + 1
DO WHILE afin1(gig) >= 480 * jf1
 afin1(gig) = afin1(gig) - 480 * jf1
 jf1 = jf1 + 1
LOOP
afin2(gig) = FIN2 - 480 * t
ELSEIF fin1 < 480 * t AND FIN2 >= 480 * t THEN
 afin1(gig) = fin1 - 480 * t
 afin2(gig) = FIN2 - 480 * t
ELSEIF FIN2 < 480 * t THEN
 afin1(gig) = 0
 afin2(gig) = 0
END IF
NEXT
FOR gig = nof + 3 TO nofloor + 4
IF fin3 >= 480 * t THEN
 afin3(gig) = fin3 - 480 * t
 jf3 = t + 1
DO WHILE afin3(gig) >= 480 * jf3
 afin5(gig) = afin3(gig) - 480 * jf3
 jf3 = jf3 + 1
LOOP
afin4(gig) = fin4 - 480 * t
ELSEIF fin3 < 480 * t AND fin4 >= 480 * t THEN
 afin3(gig) = fin3 - 480 * t
 afin4(gig) = fin4 - 480 * t
ELSEIF fin4 < 480 * t THEN
 afin3(gig) = 0
 afin4(gig) = 0
END IF
NEXT
FOR gig = nof + 3 TO nofloor + 4
IF fin5 >= 480 * t THEN
 afin5(gig) = fin5 - 480 * t
 jf5 = t + 1
DO WHILE afin5(gig) >= 480 * jf5
 afin5(gig) = afin5(gig) - 480 * jf5
 jf5 = jf5 + 1
LOOP
afin6(gig) = fin6 - 480 * t
ELSEIF fin5 < 480 * t AND fin6 >= 480 * t THEN
afin5(gig) = fin5 - 480 * t
afin6(gig) = fin6 - 480 * t
ELSEIF fin6 < 480 * t THEN
afin5(gig) = 0
afin6(gig) = 0
END IF
NEXT

FOR gig = nof + 3 TO nofloor + 4
IF fin7 >= 480 * t THEN
afin7(gig) = fin7 - 480 * t
jf7 = t + 1
DO WHILE afin7(gig) >= 480 * jf7
afin7(gig) = afin7(gig) - 480 * jf7
jf7 = jf7 + 1
LOOP
afin8(gig) = fin8 - 480 * t
ELSEIF fin7 < 480 * t AND fin8 >= 480 * t THEN
afin7(gig) = fin7 - 480 * t
afin8(gig) = fin8 - 480 * t
ELSEIF fin8 < 480 * t THEN
afin7(gig) = 0
afin8(gig) = 0
END IF
NEXT

FOR gig = nof + 3 TO nofloor + 4
IF fin9 >= 480 * t THEN
afin9(gig) = fin9 - 480 * t
jf9 = t + 1
DO WHILE afin9(gig) >= 480 * jf9
afin9(gig) = afin9(gig) - 480 * jf9
jf9 = jf9 + 1
LOOP
afin10(gig) = fin10 - 480 * t
ELSEIF fin9 < 480 * t AND fin10 >= 480 * t THEN
afin9(gig) = fin9 - 480 * t
afin10(gig) = fin10 - 480 * t
ELSEIF fin10 < 480 * t THEN
afin9(gig) = 0
afin10(gig) = 0
END IF
NEXT

FOR gig = nof + 3 TO nofloor + 4
IF ser1 >= 480 * t THEN
aser1(gig) = ser1 - 480 * t
js1 = t + 1
DO WHILE aser1(gig) >= 480 * js1
aser1(gig) = aser1(gig) - 480 * js1
js1 = js1 + 1
LOOP
aser2(gig) = ser2 - 480 * t
ELSEIF ser1 < 480 * t AND ser2 >= 480 * t THEN
aser1(gig) = ser1 - 480 * t
aser2(gig) = ser2 - 480 * t
ELSEIF ser2 < 480 * t THEN
aser1(gig) = 0
aser2(gig) = 0

A14-67
END IF
NEXT
FOR gig = nof + 3 TO nofloor + 4
IF ser3 >= 480 * t THEN
aser3(gig) = ser3 - 480 * t
js3 = t + 1
DO WHILE aser3(gig) >= 480 * js3
aser3(gig) = aser3(gig) - 480 * js3
js3 = js3 + 1
LOOP
aser4(gig) = ser4 - 480 * t
ELSEIF ser3 < 480 * t AND ser4 >= 480 * t THEN
aser3(gig) = ser3 - 480 * t
aser4(gig) = ser4 - 480 * t
ELSEIF ser4 < 480 * t THEN
aser3(gig) = 0
aser4(gig) = 0
END IF
NEXT
FOR gig = nof + 3 TO nofloor + 4
IF ser5 >= 480 * t THEN
aser5(gig) = ser5 - 480 * t
js5 = t + 1
DO WHILE aser5(gig) >= 480 * js5
aser5(gig) = aser5(gig) - 480 * js5
js5 = js5 + 1
LOOP
aser6(gig) = ser6 - 480 * t
ELSEIF ser5 < 480 * t AND ser6 >= 480 * t THEN
aser5(gig) = ser5 - 480 * t
aser6(gig) = ser6 - 480 * t
ELSEIF ser6 < 480 * t THEN
aser5(gig) = 0
aser6(gig) = 0
END IF
NEXT
END SUB
SUB plp10 (glxxe, glxxl, glyye, glyyl, glzze, glzzl, gltte, glttl, gluuue, gluul, g22b, g22bl, g2xxe, g2xxl, g2yye, g2yyl, g2zze, g2zzl, gyye(44), gyy1(44), gxxe(4), gxxl(4)) STATIC
COLOR 5
LINE (glxxe, 40)-(glxxl, 45), , BF
LINE (glyye, 70)-(glyyl, 75), , BF
LINE (glzze, 100)-(glzzl, 105), , BF
LINE (gltte, 100)-(glttl, 105), , BF
LINE (gluuue, 100)-(gluuul, 105), , BF
LINE (g22b, 150)-(g22bl, 155), , BF
LINE (g2xxe, 180)-(g2xxl, 185), , BF
LINE (g2yye, 210)-(g2yyl, 215), , BF
LINE (g2zze, 250)-(g2zzl, 255), , BF
LINE (gyye(44), 315)-(gyyl(44), 320), , BF
LINE (gxxe(4), 400)-(gxxl(4), 405), , BF
COLOR 4
LINE (glyye, 40)-(glyye + 1, 70), , BF
LINE (glzze, 70)-(glzze + 1, 100), , BF
LINE (g22b, 100)-(g22bl + 1, 150), , BF
LINE (g2xxe, 150)-(g2xxl + 1, 180), , BF
LINE (g2yye, 180)-(g2yyl + 1, 210), , BF
LINE (g2zze, 210)-(g2zzl + 1, 250), , BF
LINE (gyye(44), 250)-(gyye(44) + 1, 315), , BF
LINE (gxxe(4), 315)-(gxxe(4) + 1, 400), , BF
COLOR 15
END SUB
SUB p1p10e (xxe, xx, yye, YY, zze, zz, tte, tt, uue, uu, xxe2, xxx2, xxe2, xx2, yye2, yy2, zze2, zz2, qyye(), qyy1(), qxxe(), qxx())
COLOR 5
LINE (xxe, 40)-(xx, 45), , BF
LINE (yye, 70)-(YY, 75), , BF
LINE (zze, 100)-(zz, 105), , BF
LINE (tte, 100)-(tt, 105), , BF
LINE (uue, 100)-(uu, 105), , BF
LINE (xxxe2, 150)-(xxx2, 155), , BF
LINE (xxe2, 180)-(xx2, 185), , BF
LINE (yye2, 210)-(yy2, 215), , BF
LINE (zze2, 250)-(zz2, 255), , BF
LINE (qyye(44), 315)-(qyy1(44), 320), , BF
LINE (qxxe(4), 400)-(qxx(4), 405), , BF
COLOR 4
LINE (yye, 40)-(yye + 1, 70), , BF
LINE (zze, 70)-(zze + 1, 100), , BF
LINE (xxxe2, 100)-(xxxe2 + 1, 150), , BF
LINE (xxe2, 150)-(xxe2 + 1, 180), , BF
LINE (yye2, 180)-(yye2 + 1, 210), , BF
LINE (zze2, 210)-(zze2 + 1, 250), , BF
LINE (qyye(44), 250)-(qyye(44) + 1, 315), , BF
LINE (qxxe(4), 315)-(qxxe(4) + 1, 400), , BF
COLOR 15
END SUB
SUB plpl1 (gxxee(), gxxeei(), nof, nof1, gxxe(), gxx1(),
gyye(), gyy1(), gzze(), gzzl(), hj) STATIC
page = 1
hj = 4
COLOR 5
LINE (gxxe(hj), 80)-(gxx1(hj), 85), , BF
LINE (gyye(hj), 110)-(gyyl(hj), 115), , BF
LINE (gxxe(hj + 1), 210)-(gxx1(hj + 1), 215), , BF
LINE (gyye(hj + 1), 240)-(gyyl(hj + 1), 245), , BF
LINE (gxxe(hj + 2), 340)-(gxx1(hj + 2), 345), , BF
LINE (gyye(hj + 2), 370)-(gyyl(hj + 2), 375), , BF
COLOR 4
LINE (gyye(hj), 80)-(gyye(hj) + 1, 110), , BF
LINE (gxxe(hj) + 1, 110)-(gxxe(hj) + 1, 210), , BF
LINE (gxxe(hj) + 1, 150)-(gxxe(hj) + 1, 210), , BF
LINE (gyye(hj) + 1, 210)-(gyye(hj) + 1, 240), , BF
LINE (gxxe(hj) + 2, 240)-(gxxe(hj) + 2, 340), , BF
LINE (gxxe(hj) + 2, 280)-(gxxe(hj) + 2, 340), , BF
LINE (gyye(hj) + 2, 340)-(gyye(hj) + 2, 370), , BF
LINE (gzze(hj) + 1, 150)-(gzze(hj) + 1, 280), , BF
LINE (gyyl(hj), 110)-(gyyl(hj) + 1, 150), , BF
COLOR 5
LINE (gzze(hj), 150)-(gyyl(hj), 155), , BF
LINE (gzze(hj) + 1, 280)-(gzze(hj) + 1, 285), , BF
LINE (gzze(hj) + 2, 410)-(gzze(hj) + 2, 415), , BF
LINE (gzze(hj) + 2, 280)-(gzze(hj) + 2, 410), , BF
IF gxxee(4) > 480 * (page - 1) AND gxxee(4) < 480 * (page)
THEN
po = gxxee(4)
DO UNTIL po < 480
po = po - 480
LOOP
COLOR 14
IF nof = 1 THEN
LINE (po, 115)-(po + 2, 125), , BF
ELSEIF nof = 2 THEN
LINE (po, 245)-(po + 2, 255), , BF
ELSEIF nof = 3 THEN
LINE (po, 175)-(po + 2, 185), , BF
END IF
END IF
IF gxxeei(4) > 480 * (page - 1) AND gxxeei(4) < 480 * (page)
THEN
poi = gxxeei(4)
IF poi > gzze(4) THEN
poi = gzze(4)
END IF
DO UNTIL poi < 480
poi = poi - 480
A14-71
LOOP
COLOR 9
IF nof1 = 1 THEN
LINE (poi, 155)-(poi + 2, 170), , BF
ELSEIF nof1 = 2 THEN
LINE (poi, 285)-(poi + 2, 300), , BF
ELSEIF nof1 = 3 THEN
LINE (poi, 415)-(poi + 2, 430), , BF
END IF
END IF
SUB plp!2 (gxxee(), gxxeei(), page, nof, nof1, qxwe(), qxw(), qyye(), qyy(), qzze(), qzz(), hjl) STATIC
hjl = 6
COLOR 5
LINE (qxwe(hjl), 80)-(qxw(hjl), 85), , BF
LINE (qyye(hjl), 110)-(qyy(hjl), 115), , BF
LINE (qxwe(hjl + 1), 210)-(qxw(hjl + 1), 215), , BF
LINE (qyye(hjl + 1), 240)-(qyy(hjl + 1), 245), , BF
LINE (qxwe(hjl + 2), 340)-(qxw(hjl + 2), 345), , BF
LINE (qyye(hjl + 2), 370)-(qyy(hjl + 2), 375), , BF
LINE (qzze(hjl), 150)-(qzz(hjl), 155), , BF
LINE (qzze(hjl + 1), 280)-(qzz(hjl + 1), 285), , BF
LINE (qzze(hjl + 2), 410)-(qzz(hjl + 2), 415), , BF
COLOR 4
IF qyye(hjl) = 0 THEN
LINE (0, 0)-(0, 0)
ELSE
LINE (qyye(hjl), 80)-(qyye(hjl) + 1, 110), , BF
END IF
IF qxwe(hjl + 1) = 0 THEN
LINE (0, 0)-(0, 0)
ELSE
LINE (qxwe(hjl + 1), 110)-(qxwe(hjl + 1) + 1, 210), , BF
LINE (qxwe(hjl + 1), 150)-(qxwe(hjl + 1) + 1, 210), , BF
END IF
IF qyye(hjl + 1) = 0 THEN
LINE (0, 0)-(0, 0)
ELSE
LINE (qyye(hjl + 1), 210)-(qyye(hjl + 1) + 1, 240), , BF
END IF
IF qxwe(hjl) = 0 THEN
LINE (0, 0)-(0, 0)
ELSE
LINE (qxwe(hjl + 2), 240)-(qxwe(hjl + 2) + 1, 340), , BF
LINE (qxwe(hjl + 2), 280)-(qxwe(hjl + 2) + 1, 340), , BF
END IF
IF qyye(hjl + 2) = 0 THEN
LINE (0, 0)-(0, 0)
ELSE
LINE (qyye(hjl + 2), 340)-(qyye(hjl + 2) + 1, 370), , BF
END IF
IF qzze(hjl) = 0 THEN
LINE (0, 0)-(0, 0)
ELSE
LINE (qzze(hjl), 110)-(qzze(hjl) + 1, 150), , BF
END IF
IF qzze(hjl + 1) = 0 THEN
A14-72
ELSE
LINE (qzze(hj1 + 1), 240)-(qzze(hj1 + 1) + 1, 280), , BF
END IF
IF qzze(hj1 + 2) = 0 THEN
LINE (0, 0)-(0, 0)
ELSE
LINE (qzze(hj1 + 2), 370)-(qzze(hj1 + 2) + 1, 410), , BF
END IF
COLOR 15
IF gxxee(4) > 480 * (page - 1) AND gxxee(4) < 480 * (page) THEN
po = gxxee(4)
DO UNTIL po < 480
po = po - 480
LOOP
COLOR 14
IF nof = 3 THEN
LINE (po, 110)-(po + 2, 120), , BF
ELSEIF nof = 4 THEN
LINE (po, 240)-(po + 2, 250), , BF
ELSEIF nof = 5 THEN
LINE (po, 370)-(po + 2, 380), , BF
END IF
END IF
IF gxxeei(4) > 480 * (page - 1) AND gxxeei(4) < 480 * (page) THEN
poi = gxxeei(4)
IF poi > gzze(4) THEN
poi = gzze(4)
END IF
DO UNTIL poi < 480
poi = poi - 480
LOOP
COLOR 1
IF nofl = 3 THEN
LINE (poi, 150)-(poi + 2, 160), , BF
ELSEIF nofl = 4 THEN
LINE (poi, 280)-(poi + 2, 290), , BF
ELSEIF nofl = 5 THEN
LINE (poi, 410)-(poi + 2, 420), , BF
END IF
END IF
COLOR 15
END SUB
SUB plpl2g (gxxe(), gxxl(), gyye(), gyy1(), gzze(), gzzl(), i, a) STATIC

i = a + 1
COLOR 5
LINE (gxxe(i), 80)-(gxxl(i), 85), , BF
LINE (gyye(i), 110)-(gyyll(i), 115), , BF
LINE (gzze(i), 150)-(gzzl(i), 155), , BF
LINE (gxxe(i + 1), 210)-(gxxl(i + 1), 215), , BF
LINE (gyye(i + 1), 240)-(gyyll(i + 1), 245), , BF
LINE (gzze(i + 1), 280)-(gzzl(i + 1), 285), , BF
LINE (gxxe(i + 2), 340)-(gxxl(i + 2), 345), , BF
LINE (gyye(i + 2), 370)-(gyyll(i + 2), 375), , BF
LINE (gzze(i + 2), 410)-(gzzl(i + 2), 415), , BF
COLOR 4
LINE (gyye(i), 80)-(gyye(i) + 1, 110), , BF
LINE (gxxe(i + 1), 110)-(gxxe(i + 1) + 1, 210), , BF
LINE (gxxe(i + 1), 150)-(gxxe(i + 1) + 1, 210), , BF
LINE (gyye(i + 1), 210)-(gyye(i + 1) + 1, 240), , BF
LINE (gxxe(i + 2), 240)-(gxxe(i + 2) + 1, 340), , BF
LINE (gxxe(i + 2), 280)-(gxxe(i + 2) + 1, 340), , BF
LINE (gyye(i + 2), 340)-(gyye(i + 2) + 1, 370), , BF
LINE (gzze(i), 110)-(gzze(i) + 1, 150), , BF
LINE (gzze(i + 1), 150)-(gzze(i + 1) + 1, 280), , BF
LINE (gzze(i + 2), 280)-(gzze(i + 2) + 1, 410), , BF
COLOR 15

END SUB
SUB plp2 (gxxe(), gxx1(), gyye(), gyy1(), gzze(), gzz1(), hj1) STATIC
hj1 = 6
COLOR 5
LINE (gxxe(hj1), 80)-(gxx1(hj1), 85), , BF
LINE (gyye(hj1), 110)-(gyyl(hj1), 115), , BF
LINE (gzze(hj1), 150)-(gzzl(hj1), 155), , BF
LINE (gxxe(hj1 + 1), 210)-(gxx1(hj1 + 1), 215), , BF
LINE (gyye(hj1 + 1), 240)-(gyyl(hj1 + 1), 245), , BF
LINE (gzze(hj1 + 1), 280)-(gzzl(hj1 + 1), 285), , BF
LINE (gxxe(hj1 + 2), 340)-(gxx1(hj1 + 2), 345), , BF
LINE (gyye(hj1 + 2), 370)-(gyyl(hj1 + 2), 375), , BF
COLOR 4
LINE (gyye(hj1), 80)-(gyye(hj1) + 1, 110), , BF
LINE (gxxe(hj1 + 1), 110)-(gxxe(hj1 + 1) + 1, 210), , BF
LINE (gxxe(hj1 + 1), 150)-(gxxe(hj1 + 1) + 1, 210), , BF
LINE (gyye(hj1 + 1), 210)-(gyye(hj1 + 1) + 1, 240), , BF
LINE (gxxe(hj1 + 2), 240)-(gxxe(hj1 + 2) + 1, 340), , BF
LINE (gxxe(hj1 + 2), 280)-(gxxe(hj1 + 2) + 1, 340), , BF
LINE (gyye(hj1 + 2), 340)-(gyye(hj1 + 2) + 1, 370), , BF
LINE (gzze(hj1), 110)-(gzze(hj1) + 1, 150), , BF
LINE (gzze(hj1 + 1), 150)-(gzze(hj1 + 1) + 1, 280), , BF
COLOR 15
END SUB
SUB plp2g (gxxe(), gxxl(), gyye(), gyy1(), gzze(), gzzl(), i, a)
 STATIC

 i = a + 1

COLOR 5
LINE (gxxe(i), 80)–(gxxl(i), 85), , BF
LINE (gyye(i), 110)–(gyyl(i), 115), , BF
LINE (gzze(i), 150)–(gzzl(i), 155), , BF
LINE (gxxe(i + 1), 210)–(gxxl(i + 1), 215), , BF
LINE (gyye(i + 1), 240)–(gyyl(i + 1), 245), , BF
LINE (gzze(i + 1), 280)–(gzzl(i + 1), 285), , BF
LINE (gxxe(i + 2), 340)–(gxxl(i + 2), 345), , BF
LINE (gyye(i + 2), 370)–(gyyl(i + 2), 375), , BF
COLOR 4
LINE (gyye(i), 80)–(gyye(i) + 1, 110), , BF
LINE (gxxe(i + 1), 110)–(gxxe(i + 1) + 1, 210), , BF
LINE (gxxe(i + 1), 150)–(gxxe(i + 1) + 1, 210), , BF
LINE (gyye(i + 1), 210)–(gyye(i + 1) + 1, 240), , BF
LINE (gxxe(i + 2), 240)–(gxxe(i + 2) + 1, 340), , BF
LINE (gxxe(i + 2), 280)–(gxxe(i + 2) + 1, 340), , BF
LINE (gyye(i + 2), 340)–(gyye(i + 2) + 1, 370), , BF
LINE (gzze(i), 110)–(gzze(i) + 1, 150), , BF
LINE (gzze(i + 1), 150)–(gzze(i + 1) + 1, 280), , BF
COLOR 15

END SUB
SUB p2p11 (gxxe(), gxxe(), page, nofl, nof, qxxe(), qx(), qyye(), qy(), qzze(), qz(), hj2) STATIC
hj2 = 4
COLOR 5
LINE (qxxe(hj2), 80)-(qxx(hj2), 85), , BF
LINE (qyye(hj2), 110)-(qyy(hj2), 115), , BF
LINE (qxxe(hj2 + 1), 210)-(qxx(hj2 + 1), 215), , BF
LINE (qyye(hj2 + 1), 240)-(qyy(hj2 + 1), 245), , BF
LINE (qzze(hj2 + 1), 280)-(qzz(hj2 + 1) + 1, 285), , BF
LINE (qxxe(hj2 + 2), 340)-(qxx(hj2 + 2), 345), , BF
COLOR 4
IF qyye(hj2) = 0 THEN
LINE (qyye(hj2), 80)-(qyye(hj2), 110), , BF
ELSE
LINE (qyye(hj2), 80)-(qyye(hj2) + 1, 110), , BF
END IF
IF qxxe(hj2 + 1) = 0 THEN
LINE (qxxe(hj2 + 1), 80)-(qxxe(hj2 + 1), 110), , BF
ELSE
LINE (qxxe(hj2 + 1), 110)-(qxxe(hj2 + 1) + 1, 210), , BF
LINE (qxxe(hj2 + 1), 150)-(qxxe(hj2 + 1) + 1, 210), , BF
END IF
IF qyye(hj2 + 1) = 0 THEN
LINE (qyye(hj2 + 1), 80)-(qyye(hj2 + 1), 110), , BF
ELSE
LINE (qyye(hj2 + 1), 210)-(qyye(hj2 + 1) + 1, 240), , BF
END IF
IF qxxe(hj2 + 2) = 0 THEN
LINE (qxxe(hj2 + 2), 80)-(qxxe(hj2 + 2), 110), , BF
ELSE
LINE (qxxe(hj2 + 2), 240)-(qxxe(hj2 + 2) + 1, 340), , BF
LINE (qxxe(hj2 + 2), 280)-(qxxe(hj2 + 2) + 1, 340), , BF
END IF
IF qyye(hj2 + 2) = 0 THEN
LINE (qyye(hj2 + 2), 80)-(qyye(hj2 + 2), 110), , BF
ELSE
LINE (qyye(hj2 + 2), 340)-(qyye(hj2 + 2) + 1, 370), , BF
END IF
COLOR 4
IF qzze(hj2) = 0 THEN
LINE (0, 0)-(0, 0), , BF
ELSE
LINE (qzze(hj2), 110)-(qzze(hj2) + 1, 150), , BF
END IF
IF qzze(hj2 + 1) = 0 THEN
LINE (0, 0)-(0, 0), , BF
ELSE
LINE (qzze(hj2 + 1), 240)-(qzze(hj2 + 1) + 1, 280), , BF
END IF
IF qzze(hj2 + 2) = 0 THEN
LINE (0, 0)-(0, 0), , BF
ELSE
LINE (qzze(hj2 + 2), 370)-(qzze(hj2 + 2) + 1, 410), , BF
END IF
IF gxxee(4) > 480 * (page - 1) AND gxxee(4) < 480 * (page) THEN
po = gxxee(4)
DO UNTIL po < 480
po = po - 480
LOOP
COLOR 14
IF nof = 1 THEN
LINE (po, 110)-(po + 2, 120), , BF
ELSEIF nof = 2 THEN
LINE (po, 240)-(po + 2, 250), , BF
ELSEIF nof = 3 THEN
LINE (po, 370)-(po + 2, 380), , BF
END IF
END IF
END IF
IF gxxeei(4) > 480 * (page - 1) AND gxxeei(4) < 480 * (page) THEN
poi = gxxeei(4)
IF poi > gzze(4) THEN
poi = gzze(4)
END IF
DO UNTIL poi < 480
poi = poi - 480
LOOP
COLOR 1
IF nofl = 1 THEN
LINE (poi, 150)-(poi + 2, 160), , BF
ELSEIF nofl = 2 THEN
LINE (poi, 280)-(poi + 2, 290), , BF
ELSEIF nofl = 3 THEN
LINE (poi, 410)-(poi + 2, 420), , BF
END IF
END IF
COLOR 15
END SUB
SUB p2p12 (qxxe(), qxx(), qyye(), qyy(), qzze(), qzz(), i, a)
STATIC
i = a + 1
COLOR 5
LINE (qxxe(i), 80)-(qxx(i), 85), , BF
LINE (qyye(i), 110)-(qyy(i), 115), , BF
LINE (qzze(i), 150)-(qzz(i) + 1, 155), , BF
LINE (qxxe(i + 1), 210)-(qxx(i + 1), 215), , BF
LINE (qyye(i + 1), 240)-(qyy(i + 1), 245), , BF
LINE (qzze(i + 1), 280)-(qzz(i + 1) + 1, 285), , BF
LINE (qxxe(i + 2), 340)-(qxx(i + 2), 345), , BF
LINE (qyye(i + 2), 370)-(qyy(i + 2), 375), , BF
LINE (qzze(i + 2), 410)-(qzz(i + 2) + 1, 415), , BF
COLOR 4
LINE (qyye(i), 80)-(qyy(i) + 1, 110), , BF
LINE (qxxe(i + 1), 110)-(qxx(i + 1) + 1, 210), , BF
LINE (qxxe(i + 1), 150)-(qxx(i + 1) + 1, 210), , BF
LINE (qyye(i + 1), 210)-(qyy(i + 1) + 1, 240), , BF
LINE (qxxe(i + 2), 240)-(qxx(i + 2) + 1, 340), , BF
LINE (qxxe(i + 2), 280)-(qxx(i + 2) + 1, 340), , BF
LINE (qyye(i + 2), 340)-(qyy(i + 2) + 1, 370), , BF
IF qzze(i) = 0 THEN
LINE (qzze(i), 80)-(qzze(i), 110), , BF
ELSE
LINE (qzze(i), 110)-(qzze(i) + 1, 150), , BF
END IF
IF qzze(i + 1) = 0 THEN
LINE (qzze(i + 1), 80)-(qzze(i + 1), 110), , BF
ELSE
LINE (qzze(i + 1), 240)-(qzze(i + 1) + 1, 280), , BF
END IF
IF qzze(i + 2) = 0 THEN
LINE (qzze(i + 2), 80)-(qzze(i + 2), 110), , BF
ELSE
LINE (qzze(i + 2), 370)-(qzze(i + 2) + 1, 410), , BF
END IF
COLOR 15
eND SUB
SUB p2p22 (gxxee(), gxxeei(), nof, nof1, page, qxex(), qxex(), qyy(), qyy(), qzz(), qzz(), i, a) STATIC

COLOR 5
LINE (qxex(i), 80)-(qxex(i), 85), , BF
LINE (qyy(i), 110)-(qyy(i), 115), , BF
LINE (qzz(i), 150)-(qzz(i) + 1, 155), , BF
LINE (qxex(i + 1), 210)-(qxex(i + 1), 215), , BF
LINE (qyy(i + 1), 240)-(qyy(i + 1), 245), , BF
LINE (qzz(i + 1), 280)-(qzz(i + 1) + 1, 285), , BF
LINE (qxex(i + 2), 340)-(qxex(i + 2), 345), , BF
LINE (qyy(i + 2), 370)-(qyy(i + 2), 375), , BF
COLOR 4
LINE (qyy(i), 80)-(qyy(i) + 1, 110), , BF
LINE (qxex(i + 1), 110)-(qxex(i + 1) + 1, 210), , BF
LINE (qyy(i + 1), 150)-(qxex(i + 1) + 1, 210), , BF
LINE (qyy(i + 1), 210)-(qxex(i + 1) + 1, 240), , BF
LINE (qxx(i + 1), 340)-(qxex(i + 1) + 1, 340), , BF
LINE (qyy(i + 2), 280)-(qxex(i + 2) + 1, 340), , BF
LINE (qyy(i + 2), 340)-(qyy(i + 2) + 1, 370), , BF
LINE (qzz(i), 110)-(qzz(i) + 1, 150), , BF
LINE (qzz(i), 240)-(qzz(i) + 1, 1, 280), , BF

IF gxxee(4) > 480 * (page - 1) AND gxxee(4) < 480 * (page)
THEN
po = gxxee(4)
DO UNTIL po < 480
po = po - 480
LOOP
COLOR 14
IF nof = 3 THEN
LINE (po, 110)-(po + 2, 120), , BF
ELSEIF nof = 4 THEN
LINE (po, 240)-(po + 2, 250), , BF
ELSEIF nof = 5 THEN
LINE (po, 370)-(po + 2, 380), , BF
END IF
END IF

IF gxxeei(4) > 480 * (page - 1) AND gxxeei(4) < 480 * (page)
THEN
poi = gxxeei(4)

A14-80
IF poi > gzze(4) THEN
poi = gzze(4)
END IF
DO UNTIL poi < 480
poi = poi - 480
LOOP
COLOR 1
IF nofl = 3 THEN
LINE (poi, 150)-(poi + 2, 160), , BF
ELSEIF nofl = 4 THEN
LINE (poi, 280)-(poi + 2, 290), , BF
ELSEIF nofl = 5 THEN
LINE (poi, 410)-(poi + 2, 420), , BF
END IF
END IF
COLOR 15
END SUB

SUB sf (afin1(), afin2(), afin3(), afin4(), afin5(), afin6(), afin7(), afin8(), afin9(), afin10(), aser1(), aser2(),
aser3(), aser4(), aser5(), aser6(), i) STATIC

COLOR 5
LINE (afin1(i + 1), 290)-(afin2(i + 1), 295), , BF
LINE (afin3(i + 1), 308)-(afin4(i + 1), 313), , BF
LINE (afin5(i + 1), 326)-(afin6(i + 1), 331), , BF
LINE (afin7(i + 1), 344)-(afin8(i + 1), 349), , BF
LINE (afin9(i + 1), 362)-(afin10(i + 1), 367), , BF
LINE (aser1(i + 1), 390)-(aser2(i + 1), 395), , BF
LINE (aser3(i + 1), 408)-(aser4(i + 1), 413), , BF
LINE (aser5(i + 1), 424)-(aser6(i + 1), 429), , BF

END SUB
APPENDIX 15 CODING FOR THE OPTIMISATION MODEL
DECLARE SUB ratio1 (si!, s2!, s162!, s188!, s465!, f1!, f2!, f3!, f4!, costra!, ib219!, ib217!, b219!, b217!, s1m!, s2m!, s162m!, s188m!, s465m!, f1m!, f2m!, f3m!, f4m!, c1!, ib219m!, ib217m!, b219m!, b217m!, DIFF!(), ratio!(), indact!(), indactm!(), dir!())
DECLARE SUB ratio2 (f6!, f7!, f8!, f9!, f10!, s4!, seml!, see1!, tf374!, tf377!, tf380!, tf373!, tf376!, tf379!, tf378!, tf381!, f6m!, f7m!, f8m!, f9m!, f10m!, s4m!, sem1m!, see1m!, tf374m!, tf377m!, tf380m!, tf373m!, tf376m!, tf379m!, tf378m!, tf381m!, DIFF!(), ratio!(), indact!(), indactm!(), dir!(), nofloor)
DECLARE SUB xyy (dur!(), lag!(), X!(), Y!(), nofloor!, NOF!, NOF1!, PR!)
DECLARE SUB XYYM (DURM!(), lagm!(), XM!(), YM!(), nofloor!, NOFm!, NOFLm!, prM!)
DECLARE SUB lagii (ltlr!, lrlb!, ltbl!, ltlc!, f1f2!, f2f3!, lagsfio!, lagfogr!, laggrfir!, lagcwsb1!, lagsbs1!, lagcw2!, lagsb1!, lagsb2!, lagscl!, laglaro!, lagfnbb!, lagi!, lrlb!, lagra!, lain!, lawa!, lafl!, lace!, laex!, lai!, lame!, lael!, lag!())
DECLARE SUB durn (s5!, s6!, s163!, s188!, s465!, F11!, F12!, f13!, F14!, dayra!, ib169!, ib161!, b169!, b161!, f12!, f14!, fiw2!, f1f2!, fic2!, fie2!, se12!, sem12!, see22!, tf243!, tf286!, tf303!, tf28!, tf71!, tf111!, tf149!, TF176!, tf150!, dur!())
DECLARE SUB lagiiim (ltlrm!, lrlbm!, ltblm!, ltlcm!, f1f2m!, f2f3m!, lagsfiom!, lagfogrm!, laggrfirm!, lagcwsb1m!, lagsbs1m!, lagcw2m!, lagsb1m!, lagsb2m!, lagsclm!, laglarom!, lagfnbmm!, lagim!, lrlbmm!, lagram!, lainm!, lawam!, laflm!, lacem!, laexm!, lai!, lame!, lael!, lagm!())
DECLARE SUB du2 (s5m!, s6m!, s163m!, s188m!, s465m!, F11m!, F12m!, f13m!, F14m!, dayram!, ib169m!, ib161m!, b169m!, b161m!, f12m!, f14m!, fiw2m!, f1f2m!, fic2m!, fie2m!, se12m!, sem12m!, see2m!, tf243m!, tf286m!, tf303m!, tf28m!, tf71m!, tf111m!, tf149m!, TF176m!, tf150m!, DURM!())
DECLARE SUB diff1 (s5!, s6!, s163!, s188!, s465!, F11!, F12!, f13!, F14!, dayra!, ib169!, ib161!, b169!, b161!, s5m!, s6m!, s163m!, s188m!, s465m!, F11!, F12!, f13!, f14!, dayra!, ib169m!, ib161m!, b169m!, b161m!, f12m!, f14m!, f13m!, f14m!, dayram!, ib169m!, ib161m!, b169m!, b161m!, DIFF!())
DECLARE SUB diff2 (f12!, f14!, fiw2!, f1f2!, fic2!, fie2!, se12!, sem12!, see2!, tf243!, tf286!, tf303!, tf28!, tf71!, tf111!, tf149!, TF176!, tf150!, f12m!, f14m!, fiw2m!, f1f2m!, fic2m!, fie2m!, se12m!, sem12m!, see2m!, tf243m!, tf286m!, tf303m!, tf28m!, tf71m!, tf111m!, tf149m!, TF176!, tf150m!, DIFF!())
OPEN "tott.dat" FOR INPUT AS #10
INPUT #10, PR, prM, projdir, projdirm, INDIRECT, INDIRECTM, totco, totcom, durl, dur2, dur3, durlm, dur2m, dur3m, d31, d32, d33, d34, d35, d36, d37, d38, d31m, d32m, d33m, d34m, d35m, d36m, d37m, d38m
DIM lag(29), lagm(29), DIFF(31), ratio(150), dur(31), DURM(31), X(150), Y(150), indact(150), XM(150), YM(150), indactm(150), dir(31)
OPEN "nooo.dat" FOR INPUT AS #1
INPUT #1, nofloor
CLOSE 1

OPEN "lagmaind.dat" FOR INPUT AS #8
INPUT #8, ltlr, lrlb, lblt, ltlc, flf2, f2f3, lagsifo,
lagfogr, laggrfir, lagcwsb1, lagsbs1, lagcw2, lagsb1,
lagsb2, lagscl, lagsc2, laglaro, lagfobb, lag1, NOF, NOF1,
lrlb1, lgra, lain, lawa, lafl, lace, laex, lali, lame, lael

OPEN "lagdm.dat" FOR INPUT AS #18
INPUT #18, ltlrm, lrlbm, lbltm, ltlcm, flf2m, f2f3m,
lagsifom, lagfogrnm, laggrfirnm, lagcwsb1m, lagsbs1m, lagcw2m,
lagcw1m, lagsb1m, lagsc1m, lagsc2m, laglarom,
lagfobbm, lag1m, NOFm, NOF1m, lrlb1m, lagram, lainm, lawam,
laflm, lacem, laexm, lalim, lamem, laelm

OPEN "coptsi.dat" FOR INPUT AS #9
INPUT #9, sitotc, sdat, sitotc1m, sdatm, s5m, s6m, s163m,
s188m, s465m, slm, s2m, s162m, s187m, s464m, sl, s5, s8m,
s20m, s22m, s24m, s82m, s133m, s183m, s462m, s6, s163,
s188, s465, s2, s162, s187, s464, s8, s20, s22, s24, s82,
s133, s158, s183, s462, compl, complm

CLOSE 9

OPEN "coptsi2.dat" FOR OUTPUT AS #9
PRINT #9, USING "#######.#"; sitotc; sdat; sitotc1m; sdatm;
s5m; s6m; s163m; s188m; s465m; slm; s2m; s162m; s187m; s464m;
s1; s5; s8m; s20m; s22m; s24m; s82m; s133m; s183m; s462m;
s6; s163; s188; s465; s2; s162; s187; s464; s8; s20; s22; s24;
s82; s133; s158; s183; s462; compl; complm

CLOSE 9

OPEN "coptsi2.dat" FOR INPUT AS #9
INPUT #9, sitotc, sdat, sitotc1m, sdatm, s5m, s6m, s163m,
s188m, s465m, slm, s2m, s162m, s187m, s464m, sl, s5, s8m,
s20m, s22m, s24m, s82m, s133m, s183m, s462m, s6, s163,
s188, s465, s2, s162, s187, s464, s8, s20, s22, s24, s82,
s133, s158, s183, s462, compl, complm

CLOSE 9

OPEN "coptfn.dat" FOR INPUT AS #20
INPUT #20, cofotot, fodat, cofototm, fodatm, f24m, F12m,
f13m, F14m, f2, f3, f4, F14, f2m, f3m, f180m, f125m, fgam,
f14b, f14bm, f1, f1m, f15, F11, F11m, f461b, F12, f13
CLOSE 20

OPEN "coptfn2.dat" FOR OUTPUT AS #20
PRINT #20, USING "#######.#"; cofotot; fodat; cofototm;
fodatm; f24m; F12m; f13m; F14m; f2; f3; f4; F14; f2m; f3m;
f180m; f125m; fgam; f14b; f14bm; f1; f1m; f15; F11; F11m;
f461b; F12; f13
CLOSE 20

OPEN "coptfn2.dat" FOR INPUT AS #20
INPUT #20, cofotot, fodat, cofototm, fodatm, f24m, F12m,
f13m, F14m, f2, f3, f4, F14, f2m, f3m, f180m, f125m, fgam,
f14b, f14bm, f1, f1m, f15, F11, F11m, f461b, F12, f13
CLOSE 20
OPEN "coptfl.dat" FOR INPUT AS #11
INPUT #11, fltcos, fdat, tf373, tf374, tf375, tf376, tf377, tf378, tf379, tf380, tf381, tf28, tf149, tf243, tf71, TF176, tf286, tf111, tf150, tf303, tf373m, tf374m, tf375m, tf376m, tf377m, TF378M, tf379m, tf380m, tf381m, tf28m, tf149m, tf243m, tf71m, TF176M, tf286m, tf111m, tf150m, tf303m
CLOSE 11

OPEN "coptfl2.dat" FOR OUTPUT AS #11
PRINT #11, USING "#######.#"; fltcos; fdat; tf373; tf374; tf375; tf376; tf377; tf378; tf379; tf380; tf381; tf28; tf149; tf243; tf71; TF176; tf286; tf111; tf150; tf303; tf373m; tf374m; tf375m; tf376m; tf377m; TF378M; tf379m; tf380m; tf381m; tf28m; tf149m; tf243m; tf71m; TF176M; tf286m; tf111m; tf150m; tf303m
CLOSE 11

OPEN "coptfl2.dat" FOR INPUT AS #11
INPUT #11, fltcos, fdat, tf373, tf374, tf375, tf376, tf377, tf378, tf379, tf380, tf381, tf28, tf149, tf243, tf71, TF176, tf286, tf111, tf150, tf303, tf373m, tf374m, tf375m, tf376m, tf377m, TF378M, tf379m, tf380m, tf381m, tf28m, tf149m, tf243m, tf71m, TF176M, tf286m, tf111m, tf150m, tf303m
CLOSE 11

OPEN "coptbb.dat" FOR INPUT AS #12
INPUT #12, ib2, b172, ib2m, b173m, b159m, b167m, b217, b219, b161, b169, b217m, b219m, b161m, b169m
CLOSE 12

OPEN "coptbb2.dat" FOR OUTPUT AS #12
PRINT #12, USING "#######.#"; ib2; b172; ib2m; b173m; b159m; b167m; b217; b219; b161; b169; b217m; b219m; b161m; b169m
CLOSE 12

OPEN "coptbb2.dat" FOR INPUT AS #12
INPUT #12, ib2, b172, ib2m, b173m, b159m, b167m, b217, b219, b161, b169, b217m, b219m, b161m, b169m
CLOSE 12

OPEN "icoptbb.dat" FOR INPUT AS #13
INPUT #13, ib1, ib172, ib1m, ib173m, ib159m, ib167m, ib217, ib219, ib161, ib169, ib217m, ib219m, ib161m, ib169m
CLOSE 13

OPEN "icoptbb2.dat" FOR OUTPUT AS #13
PRINT #13, USING "#######.#"; ib1; ib172; ib1m; ib173m; ib159m; ib167m; ib217; ib219; ib161; ib169; ib217m; ib219m; ib161m; ib169m
CLOSE 13

OPEN "icoptbb2.dat" FOR INPUT AS #13
INPUT #13, ib1, ib172, ib1m, ib173m, ib159m, ib167m, ib217, ib219, ib161, ib169, ib217m, ib219m, ib161m, ib169m
CLOSE 13

OPEN "ra.dat" FOR INPUT AS #14
INPUT #14, costra, dayra, cl, dayram, weekra, durra
A15-3
CLOSE 14

OPEN "ra2.dat" FOR OUTPUT AS #14
PRINT #14, USING "#######.#"; costra; dayra; c1; dayram;
weekra; durra
CLOSE 14

OPEN "ra2.dat" FOR INPUT AS #14
INPUT #14, costra, dayra, c1, dayram, weekra, durra
CLOSE 14

OPEN "graphfi.dat" FOR INPUT AS #15
INPUT #15, fii2, fiw2, fif2, fic2, fie2, f6, f7, f8, f9, f10,
fi2m, fiw2m, fif2m, fic2m, fie2m, f6m, f7m, f8m, f9m, f10m
CLOSE 15

OPEN "graphfi2.dat" FOR OUTPUT AS #15
PRINT #15, USING "#######.#"; fii2; fiw2; fif2; fic2; fie2;
f6; f7; f8; f9; f10; fi2m; fiw2m; fif2m; fic2m; fie2m; f6m;
f7m; f8m; f9m; f10m
CLOSE 15

OPEN "graphfi2.dat" FOR INPUT AS #15
INPUT #15, fii2, fiw2, fif2, fic2, fie2, f6, f7, f8, f9, f10,
fi2m, fiw2m, fif2m, fic2m, fie2m, f6m, f7m, f8m, f9m, f10m
CLOSE 15

OPEN "graphs.dat" FOR INPUT AS #16
INPUT #16, sel2, sem2, see2, s4, sem1, see1, sel2m, sem2m,
see2m, s4m, sem1m, see1m
CLOSE 16

OPEN "graphs2.dat" FOR OUTPUT AS #16
PRINT #16, USING "#######.#"; sel2; sem2; see2; s4; sem1;
see1; sel2m; sem2m; see2m; s4m; sem1m; see1m
CLOSE 16

OPEN "graphs2.dat" FOR INPUT AS #16
INPUT #16, sel2, sem2, see2, s4, sem1, see1, sel2m, sem2m,
see2m, s4m, sem1m, see1m
CLOSE 16

IF s163 > s188 AND s163 > s465 THEN
S7 = s163
ELSEIF s188 > s163 AND s188 > s465 THEN
S7 = s188
ELSEIF s465 > s163 AND s465 > s188 THEN
S7 = s465
END IF

f17 = tf150 + lagsc1 + lagsc2
f18 = tf111 + lagcw2 + lagcw1
f19 = tf303 + lagsb1 + lagsb2
s3 = s162 + s187 + s464

tf2 = tf373 + tf376 + tf379
tf1 = tf374 + tf377 + tf380
\[tf5 = tf375 + tf378 + tf381 \]

IF \(s163m > s188m \) AND \(s163m > s465m \) THEN

S7m = s163m

ELSEIF \(s188m > s163m \) AND \(s188m > s465m \) THEN

S7m = s188m

ELSEIF \(s465m > s163m \) AND \(s465m > s188m \) THEN

S7m = s465m

END IF

\[f17m = tf150m + lagsc1 + lagsc2 \]

\[f18m = tf111m + lagcw2 + lagcw1 \]

\[f19m = tf303m + lagsb1 + lagsb2 \]

\[s3m = s162m + s187m + s464m \]

\[tf2m = tf373m + tf376m + tf379m \]

\[tf1m = tf374m + tf377m + tf380m \]

\[tf5m = tf375m + TF378M + tf381m \]

\[cvb = (nofloor - 2) * 2 \]

CALL durn(s5, s6, s163, s188, s465, F11, F12, f13, F14, dayra, ib169, ib161, b169, b161, fii2, fiw2, fif2, fic2, fie2, sel2, sem2, see2, tf243, tf286, tf303, tf28, tf71, tf111, tf149, TF176, tf150, dur())

CALL du2(s5m, s6m, s163m, s188m, s465m, F11m, F12m, f13m, F14m, dayram, ib169m, ib161m, b169m, b161m, fii2m, fiw2m, fif2m, fic2m, fie2m, sel2m, sem2m, see2m, tf243m, tf286m, tf303m, tf28m, tf71m, tf111m, tf149m, TF176M, tf150m, DURM())

CALL lagii(ltl1r, lrlb, lblt, ltlc, f1f2, f2f3, lagsifo, lagfogr, laggrfir, lagcwsbl, lagsbs1, lagcw2, lagcw1, lagsb1, lagsb2, lagscl, lagsc2, laglaro, lagfbb, lagl, lrlb1, lagra, lain, lawa, lafl, lace, laex, laali, lami, lag())

CALL lagiiim(ltl1rm, lrl1bm, lbl1tm, ltl1cm, f1f2m, f2f3m, lagsifom, lagfogrm, laggrfirm, lagcwsblm, lagsbs1m, lagcw2m, lagcw1m, lagsb1m, lagsb2m, lagsclm, lagsc2m, laglarom, lagfbbm, laglm, lrl1bm, lagram, lainm, lawam, laflm, lacem, laexm, lalim, lamem, laelm, lagm())

CALL diff1(s5, s6, s163, s188, s465, F11, F12, f13, F14, dayra, ib169, ib161, b169, b161, s5m, s6m, s163m, s188m, s465m, F11m, F12m, f13m, F14m, dayram, ib169m, ib161m, b169m, b161m, DIFF())

CALL diff2(fii2, fiw2, fif2, fic2, fie2, sel2, sem2, see2, tf243, tf286, tf303, tf28, tf71, tf111, tf149, TF176, tf150, fii2m, fiw2m, fif2m, fic2m, fie2m, sel2m, sem2m, see2m, tf243m, tf286m, tf303m, tf28m, tf71m, tf111m, tf149m, TF176M, tf150m, DIFF())

CALL xyy(dur(), lag(), X(), Y(), nofloor, NOF, NOF1, PR)

CALL XYYM(DURM(), lagm(), XM(), YM(), nofloor, NOFM, NOF1m, prM)
CALL ratio1(s1, s2, s162, s187, s464, f1, f2, f3, f4, costra,
ib219, ib217, b219, b217, slm, s2m, s162m, s187m, s464m, f1m,
f2m, f3m, f24m, cl, ib219m, ib217m, b219m, b217m, DIFF(),
ratio(), indact(), indactm(), dir())

CALL ratio2(f6, f7, f8, f9, s4, sem1, see1, tf374,
tf377, tf380, tf373, tf376, tf379, tf375, tf378, tf381, f6m,
f7m, f8m, f9m, f10m, s4m, sem1m, see1m, tf374m, tf377m,
tf380m, tf373m, tf376m, tf379m, tf375m, TF378M, tf381m,
DIFF(), ratio(), indact(), indactm(), indact(), dir(), nofloor)

OPEN "opt4.dat" FOR OUTPUT AS #21
PRINT #21, PR, prM
CLOSE 21

OPEN "opt4a.dat" FOR OUTPUT AS #21
PRINT #21, PR
CLOSE 21

OPEN "EMEL.dat" FOR OUTPUT AS #7
FOR I = 1 TO 9 * nofloor + 20
PRINT #7, X(I), Y(I), XM(I), YM(I), ratio(I)
NEXT
CLOSE (7)

OPEN "opt2.dat" FOR OUTPUT AS #19
'first (x)'s'
FOR I = 1 TO 32
PRINT #19, USING "####.##"; 0
NEXT
FOR I = 1 TO 6 * nofloor - 5
PRINT #19, USING "####.##"; 0
NEXT
FOR I = 1 TO 10
PRINT #19, USING "####.##"; ratio(I)
NEXT
FOR I = 11 TO 14
PRINT #19, USING "####.##"; ratio(I) / 5
NEXT
FOR I = 15 TO 26
PRINT #19, USING "####.##"; ratio(I)
NEXT
PRINT #19, USING "####.##"; ratio(27)
FOR I = 29 TO 31
PRINT #19, USING "####.##"; ratio(I)
NEXT
FOR I = 1 TO nofloor - 1
FOR ii = 1 TO 3
PRINT #19, USING "####.##"; ratio(22 + ii)
NEXT
PRINT #19, USING "####.##"; ratio(26)
PRINT #19, USING "####.##"; ratio(27)
PRINT #19, USING "####.##"; ratio(27)
NEXT
PRINT #19, USING "####.##"; ratio(23)
FOR I = 1 TO 3 * (nofloor - 2)
PRINT #19, USING "####.##"; ratio(I)
NEXT
FOR I = 1 TO 32
PRINT #19, USING "####.##"; ratio(I)
NEXT
FOR I = 1 TO 9 * nofloor + 20
PRINT #7, X(I), Y(I), XM(I), YM(I), ratio(I)
NEXT
PRINT #7, USING "####.##"; 0
NEXT
CLOSE (7)
PRINT #19, USING "#####.#"; 0
NEXT

FOR I = 1 TO nofloor - 2
PRINT #19, USING "#####.#"; ratio(29)
PRINT #19, USING "#####.#"; ratio(30)
PRINT #19, USING "#####.#"; ratio(31)
NEXT
PRINT #19, USING "#####.#"; 0
CLOSE 19

OPEN "dir.dat" FOR OUTPUT AS #17
FOR I = 1 TO 31
PRINT #17, dir(I)
NEXT
PRINT #17, 0
CLOSE 17

OPEN "durn.dat" FOR OUTPUT AS #17
FOR I = 1 TO 31
PRINT #17, dur(I)
NEXT
PRINT #17, 0
CLOSE 17

OPEN "durm.dat" FOR OUTPUT AS #17
FOR I = 1 TO 31
PRINT #17, DURM(I)
NEXT
CLOSE 17

OPEN "lagaa.dat" FOR OUTPUT AS #17
FOR I = 1 TO 29
PRINT #17, lagm(I),
NEXT
CLOSE #17

OPEN "nof.dat" FOR OUTPUT AS #17
PRINT #17, NOF, NOF1, NOFm, NOFlm
CLOSE #17

OPEN "tott2.dat" FOR OUTPUT AS #7
PRINT #7, PR
PRINT #7, prM
PRINT #7, projdir
PRINT #7, projdirm
PRINT #7, INDIRECT
PRINT #7, INDIRECTM
PRINT #7, totco
PRINT #7, totcom
CLOSE 7, 17, 8, 10, 18
CHAIN "c:\opt\opt2"
END
SUB diff1 (s5, s6, s163, s188, s465, F11, F12, f13, F14, dayra, ib169, ib161, b169, b161, s5m, s6m, s163m, s188m, s465m, F11m, F12m, f13m, F14m, dayram, ib169m, ib161m, b169m, b161m, DIFF()) STATIC

DIFF(1) = s5 - s5m
DIFF(2) = s6 - s6m
DIFF(3) = s163 - s163m
DIFF(4) = s188 - s188m
DIFF(5) = s465 - s465m
DIFF(6) = F11 - F11m
DIFF(7) = F12 - F12m
DIFF(8) = f13 - f13m
DIFF(9) = F14 - F14m
DIFF(10) = dayra - dayram
DIFF(11) = ib169 - ib169m
DIFF(12) = ib161 - ib161m
DIFF(13) = b169 - b169m
DIFF(14) = b161 - b161m

FOR I = 1 TO 14
IF DIFF(I) <> CINT(DIFF(I)) THEN
DIFF(I) = CINT(DIFF(I))
END IF
NEXT

END SUB
SUB diff2 (fii2, fiw2, fif2, fic2, fie2, sel2, sem2, see2, tf243, tf286, tf303, tf28, tf71, tf111, tf149, TF176, tf150, fii2m, fiw2m, fif2m, fic2m, fie2m, sel2m, sem2m, see2m, tf243m, tf286m, tf303m, tf28m, tf71m, tf111m, tf149m, TF176M, tf150m, DIFF()) STATIC

DIFF(15) = fii2 - fii2m
DIFF(16) = fiw2 - fiw2m
DIFF(17) = fif2 - fif2m
DIFF(18) = fic2 - fic2m
DIFF(19) = fie2 - fie2m
DIFF(20) = sel2 - sel2m
DIFF(21) = sem2 - sem2m
DIFF(22) = see2 - see2m
DIFF(23) = tf243 - tf243m
DIFF(24) = tf286 - tf286m
DIFF(25) = tf303 - tf303m
DIFF(26) = tf28 - tf28m
DIFF(27) = tf71 - tf71m
DIFF(28) = tf111 - tf111m
DIFF(29) = tf149 - tf149m
DIFF(30) = TF176 - TF176M
DIFF(31) = tf150 - tf150m

FOR I = 15 TO 31
IF DIFF(I) <> CINT(DIFF(I)) THEN
DIFF(I) = CINT(DIFF(I))
END IF
NEXT
END SUB
SUB du2 (s5m, s6m, s163m, s188m, s465m, F11m, F12m, f13m, F14m, dayram, ib169m, ib161m, b169m, b161m, fii2m, fiw2m, fif2m, fic2m, fie2m, sel2m, sem2m, see2m, tf243m, tf286m, tf303m, tf28m, tf71m, tf111m, tf149m, TF176M, tf150m, DURM())

DURM(1) = s5m
DURM(2) = s6m
DURM(3) = s163m
DURM(4) = s188m
DURM(5) = s465m
DURM(6) = F11m
DURM(7) = F12m
DURM(8) = f13m
DURM(9) = F14m
DURM(10) = dayram
DURM(11) = ib169m
DURM(12) = ib161m
DURM(13) = b169m
DURM(14) = b161m
DURM(15) = fii2m
DURM(16) = fiw2m
DURM(17) = fif2m
DURM(18) = fic2m
DURM(19) = fie2m
DURM(20) = sel2m
DURM(21) = sem2m
DURM(22) = see2m
DURM(23) = tf243m
DURM(24) = tf286m
DURM(25) = tf303m
DURM(26) = tf28m
DURM(27) = tf71m
DURM(28) = tf111m
DURM(29) = tf149m
DURM(30) = TF176M
DURM(31) = tf150m

FOR I = 1 TO 31
IF DURM(I) - INT(DURM(I)) <> 0 THEN
DURM(I) = INT(DURM(I)) + 1
END IF
NEXT

END SUB
SUB durn (s5, s6, s163, s188, s465, F11, F12, f13, F14, dayra, ib169, ib161, b169, b161, fii2, fiw2, fif2, fic2, fie2, se12, sem2, see2, tf243, tf286, tf303, tf28, tf71, tf111, tf149, TF176, tf150, dur())

 dur(1) = s5
 dur(2) = s6
 dur(3) = s163
 dur(4) = s188
 dur(5) = s465
 dur(6) = F11
 dur(7) = F12
 dur(8) = f13
 dur(9) = F14
 dur(10) = dayra
 dur(11) = ib169
 dur(12) = ib161
 dur(13) = b169
 dur(14) = b161
 dur(15) = fii2
 dur(16) = fiw2
 dur(17) = fif2
 dur(18) = fic2
 dur(19) = fie2
 dur(20) = se12
 dur(21) = sem2
 dur(22) = see2
 dur(23) = tf243
 dur(24) = tf286
 dur(25) = tf303
 dur(26) = tf28
 dur(27) = tf71
 dur(28) = tf111
 dur(29) = tf149
 dur(30) = TF176
 dur(31) = tf150

 FOR I = 1 TO 31
 IF dur(I) - INT(dur(I)) <> 0 THEN
 dur(I) = INT(dur(I)) + 1
 END IF
 NEXT

END SUB
SUB lagii (ltlr, lrlb, lblt, ltlc, f1f2, f2f3, lagsifo,
lagfogr, laggrfir, lagcwsbl, lagsbsl, lagcw2, lagcw1, lagsbl,
lagsb2, lagsci, lagsc2, laglaro, lagnfbb, lagi, lrlbl, lagra,
lain, lawa, lafl, lace, laex, lali, lame, lael, lag(29)) STATIC

lag(1) = ltlr
lag(2) = lrlb
lag(3) = lrlb
lag(4) = lrlb
lag(5) = lrlbl
lag(6) = lagsifo
lag(7) = f1f2
lag(8) = f2f3
lag(9) = lagfogr
lag(10) = laggrfir
lag(11) = lagcwsbl
lag(12) = lagsbsl
lag(13) = lagi
lag(14) = lagnfbb
lag(15) = lagcw2
lag(16) = lagcw1
lag(17) = lagsbl
lag(18) = lagsb2
lag(19) = lagsci
lag(20) = lagsc2
lag(21) = lain
lag(22) = lawa
lag(23) = lafl
lag(24) = lace
lag(25) = laex
lag(26) = lali
lag(27) = lame
lag(28) = lael
lag(29) = lagra

FOR I = 1 TO 29
IF lag(I) - INT(lag(I)) <> 0 THEN
lag(I) = INT(lag(I)) + 1
END IF
NEXT

END SUB
SUB lagiim (ltlr, lrlbm, lb1tm, ltlcm, flf2m, f2f3m, lagsifom, lagfogrm, laggrfirm, lagcwsblm, lagbsblm, lagcw2m, lagsblm, lagsb2m, lagsc1m, lagsc2m, laglarom, lagnfbbm, lagim, lrlblm, lagram, lainm, lawam, laflm, lacem, laexm, lamem, laelm, lagm()) STATIC
lagm(1) = ltlrm
lagm(2) = lrlbm
lagm(3) = lrlbm
lagm(4) = lrlbm
lagm(5) = lrlblm
lagm(6) = lagsifom
lagm(7) = flf2m
lagm(8) = f2f3m
lagm(9) = lagfogrm
lagm(10) = laggrfirm
lagm(11) = lagcwsblm
lagm(12) = lagbsblm
lagm(13) = lagim
lagm(14) = lagnfbbm
lagm(15) = lagcw2m
lagm(16) = lagcw1m
lagm(17) = lagsblm
lagm(18) = lagsb2m
lagm(19) = lagsc1m
lagm(20) = lagsc2m
lagm(21) = lainm
lagm(22) = lawam
lagm(23) = laflm
lagm(24) = lacem
lagm(25) = laexm
lagm(26) = laflm
lagm(27) = lamem
lagm(28) = laelm
lagm(29) = lagram

FOR I = 1 TO 29
IF lagm(I) - INT(lagm(I)) <> 0 THEN
lagm(I) = INT(lagm(I)) + 1
END IF
NEXT

END SUB
IF DIFF(1) <= .1 THEN
ratio(1) = 0
ELSE
ratio(1) = ((s1m - s1)) / DIFF(1)
END IF
dir(1) = s1
IF DIFF(2) <= .1 THEN
ratio(2) = 0
ELSE
ratio(2) = ((s2m - s2)) / DIFF(2)
END IF
dir(2) = s2
IF DIFF(3) <= .1 THEN
ratio(3) = 0
ELSE
ratio(3) = ((s162m - s162)) / DIFF(3)
END IF
dir(3) = s162
IF DIFF(4) <= .1 THEN
ratio(4) = 0
ELSE
ratio(4) = ((s188m - s188)) / DIFF(4)
END IF
dir(4) = s188
IF DIFF(5) <= .1 THEN
ratio(5) = 0
ELSE
ratio(5) = ((s465m - s465)) / DIFF(5)
END IF
dir(5) = s465
IF DIFF(6) <= .1 THEN
ratio(6) = 0
ELSE
ratio(6) = ((f1m - f1)) / DIFF(6)
END IF
dir(6) = f1
IF DIFF(7) <= .1 THEN
ratio(7) = 0
ELSE
ratio(7) = ((f2m - f2)) / DIFF(7)
END IF
dir(7) = f2
IF DIFF(8) <= .1 THEN
ratio(8) = 0
ELSE
ratio(8) = ((f3m - f3)) / DIFF(8)
END IF
dir(8) = f3
IF DIFF(9) <= .1 THEN
ratio(9) = 0
ELSE
ratio(9) = ((f4m - f4)) / DIFF(9)
END IF
dir(9) = f4
IF DIFF(IO) <= .1 THEN
ratio(IO) = 0
ELSE
ratio(IO) = ((c1 - costra)) / DIFF(IO)
END IF

dir(IO) = c1

IF DIFF(I1) <= .1 THEN
ratio(I1) = 0
ELSE
ratio(I1) = ((ib219m - ib219)) / DIFF(I1)
END IF
dir(I1) = ib219

IF DIFF(I2) <= .1 THEN
ratio(I2) = 0
ELSE
ratio(I2) = ((ib217m - ib217)) / DIFF(I2)
END IF
dir(I2) = ib217

IF DIFF(I3) <= .1 THEN
ratio(I3) = 0
ELSE
ratio(I3) = ((b219m - b219)) / DIFF(I3)
END IF
dir(I3) = b219

IF DIFF(I4) <= .1 THEN
ratio(I4) = 0
ELSE
ratio(I4) = ((b217m - b217)) / DIFF(I4)
END IF
dir(I4) = b217
END SUB
SUB ratio2 (f6, f7, f8, f9, f10, s4, seml, see1, tf374, tf377, tf380, tf373, tf376, tf379, tf375, tf378, tf381, f6m, f7m, f8m, f9m, f10m, s4m, semlm, see1m, tf374m, tf377m, tf380m, tf373m, tf376m, tf379m, tf375m, TF378m, tf381m, DIFF(), ratio(), indact(), indactm(), dir(), nofloor) STATIC

IF DIFF(15) <= .1 THEN
ratio(15) = 0
ELSE
ratio(15) = ((f6m - f6)) / DIFF(15)
END IF

dir(15) = f6
IF DIFF(16) <= .1 THEN
ratio(16) = 0
ELSE
ratio(16) = ((f7m - f7)) / DIFF(16)
END IF

dir(16) = f7
IF DIFF(17) <= .1 THEN
ratio(17) = 0
ELSE
ratio(17) = ((f8m - f8)) / DIFF(17)
END IF

dir(17) = f8
IF DIFF(18) <= .1 THEN
ratio(18) = 0
ELSE
ratio(18) = ((f9m - f9)) / DIFF(18)
END IF

dir(18) = f9
IF DIFF(19) <= .1 THEN
ratio(19) = 0
ELSE
ratio(19) = ((f10m - f10)) / DIFF(19)
END IF

dir(19) = f10
IF DIFF(20) <= .1 THEN
ratio(20) = 0
ELSE
ratio(20) = ((s4m - s4)) / DIFF(20)
END IF

dir(20) = s4
IF DIFF(21) <= .1 THEN
ratio(21) = 0
ELSE
ratio(21) = ((sem1m - sem1)) / DIFF(21)
END IF

dir(21) = sem1
IF DIFF(22) <= .1 THEN
ratio(22) = 0
ELSE
ratio(22) = ((see1m - see1)) / DIFF(22)
END IF

dir(22) = see1
IF DIFF(23) <= .1 THEN
ratio(23) = 0
ELSE
ratio(23) = ((tf374m - tf374)) / DIFF(23)
END IF

A15-16
dir(23) = tf374
IF DIFF(24) <= .1 THEN
ratio(24) = 0
ELSE
ratio(24) = ((tf377m - tf377)) / DIFF(24)
END IF
dir(24) = tf377
IF DIFF(25) <= .1 THEN
ratio(25) = 0
ELSE
ratio(25) = ((tf380m - tf380)) / DIFF(25)
END IF
dir(25) = tf380
IF DIFF(26) <= .1 THEN
ratio(26) = 0
ELSE
ratio(26) = ((tf373m - tf373)) / DIFF(26)
END IF
dir(26) = tf373
IF DIFF(27) <= .1 THEN
ratio(27) = 0
ELSE
ratio(27) = ((tf376m - tf376)) / DIFF(27)
END IF
dir(27) = tf376
IF DIFF(28) <= .1 THEN
ratio(28) = 0
ELSE
ratio(28) = ((tf379m - tf379)) / DIFF(28)
END IF
dir(28) = tf379
IF DIFF(29) <= .1 THEN
ratio(29) = 0
ELSE
ratio(29) = ((tf381m - tf381)) / DIFF(29)
END IF
dir(29) = tf381
FOR I = 1 TO nofloor - 'slab'
IF DIFF(23) <= .1 THEN
ratio(26 + (I) * 6) = 0
ELSE
ratio(26 + (I) * 6) = ((tf374m - tf374)) / DIFF(23)
END IF
IF DIFF(24) <= .1 THEN
 ratio(27 + (I) * 6) = 0
ELSE
 ratio(27 + I * 6) = ((tf377m - tf377)) / DIFF(24)
END IF
IF DIFF(25) <= .1 THEN
 ratio(28 + (I) * 6) = 0
ELSE
 ratio(28 + I * 6) = ((tf380m - tf380)) / DIFF(25)
END IF
'COLUMN'
IF DIFF(27) <= .1 THEN
 ratio(30 + (I) * 6) = 0
ELSE
 ratio(30 + I * 6) = ((tf376m - tf376)) / DIFF(27)
END IF
IF DIFF(26) <= .1 THEN
 ratio(29 + (I) * 6) = 0
ELSE
 ratio(29 + I * 6) = ((tf373m - tf373)) / DIFF(26)
END IF
IF DIFF(28) <= .1 THEN
 ratio(31 + (I) * 6) = 0
ELSE
 ratio(31 + I * 6) = ((tf379m - tf379)) / DIFF(28)
END IF
NEXT
'ROOF SLAB'
IF DIFF(23) <= .1 THEN
 ratio(26 + nofloor * 6) = 0
ELSE
 ratio(26 + nofloor * 6) = ((tf374m - tf374)) / DIFF(23)
END IF
'brick/block, finishes, service'
'STAIRCASES'
FOR I = 1 TO nofloor - 2
 IF DIFF(29) <= .1 THEN
 ratio(26 + nofloor * 6 + I) = 0
 ELSE
 ratio(26 + nofloor * 6 + I) = ((tf375m - tf375)) / DIFF(29)
 END IF
 IF DIFF(30) <= .1 THEN
 ratio(27 + nofloor * 6 + I) = 0
 ELSE
 ratio(27 + nofloor * 6 + I) = ((tf378m - tf378)) / DIFF(30)
 END IF
 IF DIFF(31) <= .1 THEN
 ratio(28 + nofloor * 6 + I) = 0
 ELSE
 ratio(28 + nofloor * 6 + I) = ((tf381m - tf381)) / DIFF(31)
 END IF
NEXT
END SUB
SUB xyy (dur(), lag(), X(), Y(), nofloor, NOF, NOF1, PR)
STATIC

X(1) = 0
Y(1) = dur(1)
X(2) = X(1) + lag(1)
X(3) = X(2) + lag(2)
X(4) = X(2) + lag(3)
X(5) = X(2) + lag(4)
FOR I = 6 TO 9
X(I) = X(I - 1) + lag(I - 1)
Y(I) = X(I) + dur(I)
NEXT

FOR I = 2 TO 9
Y(I) = X(I) + dur(I)
NEXT

X(23) = X(9) + lag(9)
X(24) = X(23) + lag(17)
X(25) = X(24) + lag(18)
X(27) = X(23) + lag(10)
X(26) = X(27) + lag(15)
X(28) = X(26) + lag(16)
X(29) = X(23) + lag(12)
X(30) = X(29) + lag(19)
X(31) = X(30) + lag(20)
X(29) = X(23) + lag(12)
X(30) = X(29) + lag(19)
X(31) = X(30) + lag(20)

'SLABS'
FOR I = 1 TO nofloor - 1
X(26 + (I) * 6) = X(27) + lag(11) * I + lag(10) * (I - 1)
Y(26 + (I) * 6) = X(26 + I * 6) + dur(23)
X(27 + I * 6) = X(26 + I * 6) + lag(17)
Y(27 + (I) * 6) = X(27 + I * 6) + dur(24)
X(28 + I * 6) = X(27 + I * 6) + lag(18)
Y(28 + (I) * 6) = X(28 + I * 6) + dur(25)

'COLUMN'
X(30 + I * 6) = X(26 + 6 * I) + lag(10)
Y(30 + (I) * 6) = X(30 + I * 6) + dur(27)
X(29 + I * 6) = X(30 + I * 6) + lag(15)
Y(29 + (I) * 6) = X(29 + I * 6) + dur(26)
X(31 + I * 6) = X(29 + I * 6) + lag(16)
Y(31 + (I) * 6) = X(31 + I * 6) + dur(28)
NEXT

'ROOF SLAB AND ASPHALT'
X(26 + nofloor * 6) = X(27) + lag(11) * nofloor + lag(10) * (nofloor - 1)
Y(26 + nofloor * 6) = X(26 + nofloor * 6) + dur(23)
X(10) = X(26 + (nofloor * 6)) + lag(29)
Y(10) = X(10) + dur(10)

'brick/block, finishes, service'
IF NOF = 1 THEN

A15- 19
X(13) = X(23) + lag(14)
X(14) = X(23) + lag(14)
ELSE
X(13) = X(26 + (NOF - 1) * 6) + lag(14)
X(14) = X(26 + (NOF - 1) * 6) + lag(14)
END IF
X(15) = X(13) + lag(21)
X(16) = X(13) + lag(22)
X(17) = X(13) + lag(23)
X(18) = X(13) + lag(24)
X(19) = X(13) + lag(25)
X(20) = X(13) + lag(26)
X(21) = X(13) + lag(27)
X(22) = X(13) + lag(28)
FOR I = 11 TO 31
Y(I) = X(I) + dur(I)
NEXT

'STAIRCASES'
I = 1
X(26 + nofloor * 6 + I) = Y(31)
Y(26 + nofloor * 6 + I) = X(26 + nofloor * 6 + I) + dur(29)
X(27 + nofloor * 6 + I) = X(26 + nofloor * 6 + I) + lag(19)
Y(27 + nofloor * 6 + I) = X(27 + nofloor * 6 + I) + dur(30)
X(28 + nofloor * 6 + I) = X(27 + nofloor * 6 + I) + lag(20)
Y(28 + nofloor * 6 + I) = X(28 + nofloor * 6 + I) + dur(31)
FOR I = 2 TO nofloor - 2
X(28 + nofloor * 6 + 3 * I - 4) = Y(28 + nofloor * 6 + 3 * I - 4) = X(28 + nofloor * 6 + 3 * I - 5) + dur(29)
X(29 + nofloor * 6 + 3 * I - 4) = X(28 + nofloor * 6 + 3 * I - 4) + lag(19)
Y(29 + nofloor * 6 + 3 * I - 4) = X(29 + nofloor * 6 + 3 * I - 4) + dur(30)
X(30 + nofloor * 6 + 3 * I - 4) = X(29 + nofloor * 6 + 3 * I - 4) + lag(20)
Y(30 + nofloor * 6 + 3 * I - 4) = X(30 + nofloor * 6 + 3 * I - 4) + dur(31)
NEXT

'STAIRCASE-INT. BLOCK-BRICK'
IF NOF1 = 1 THEN
X(11) = X(29) + lag(13)
X(12) = X(29) + lag(13)
Y(11) = X(11) + dur(11)
Y(12) = X(12) + dur(12)
ELSE
X(11) = X(26 + nofloor * 6 + NOF1 - 1) + lag(13)
X(12) = X(26 + nofloor * 6 + NOF1 - 1) + lag(13)
Y(11) = X(11) + dur(11)
Y(12) = X(12) + dur(12)
END IF
FOR I = 1 TO 9 * nofloor + 21
IF Y(I) > PR THEN
PR = Y(I)
END IF
NEXT
END SUB
SUB XYYM (DURM(), lagm(), XM(), YM(), nofloor, NOFm, NOF1m, prM) STATIC
XM(1) = 0
YM(1) = DURM(1)
XM(2) = XM(1) + lagm(1)
XM(3) = XM(2) + lagm(2)
XM(4) = XM(2) + lagm(3)
XM(5) = XM(2) + lagm(4)
FOR I = 6 TO 9
XM(I) = XM(I - 1) + lagm(I - 1)
YM(I) = XM(I) + DURM(I)
NEXT

FOR I = 2 TO 9
YM(I) = XM(I) + DURM(I)
NEXT

XM(23) = XM(9) + lagm(9)
XM(24) = XM(23) + lagm(17)
XM(25) = XM(24) + lagm(18)
XM(26) = XM(23) + lagm(10)
XM(27) = XM(26) + lagm(16)
XM(28) = XM(26) + lagm(12)
XM(29) = XM(29) + lagm(19)
XM(30) = XM(30) + lagm(20)
XM(31) = XM(30) + lagm(20)

'SLABS'
FOR I = 1 TO nofloor - 1
XM(26 + (I) * 6) = XM(27) + lagm(11) * I + lagm(10) * (I - 1)
YM(26 + I * 6) = XM(26 + I * 6) + DURM(23)
XM(27 + I * 6) = XM(26 + I * 6) + lagm(17)
YM(27 + I * 6) = XM(27 + I * 6) + DURM(24)
XM(28 + I * 6) = XM(27 + I * 6) + lagm(18)
YM(28 + I * 6) = XM(28 + I * 6) + DURM(25)

'COLUMN'
XM(30 + I * 6) = XM(26 + 6 * I) + lagm(10)
YM(30 + I * 6) = XM(30 + I * 6) + DURM(27)
XM(29 + I * 6) = XM(30 + I * 6) + lagm(15)
YM(29 + I * 6) = XM(29 + I * 6) + DURM(26)
XM(31 + I * 6) = XM(29 + I * 6) + lagm(16)
YM(31 + I * 6) = XM(31 + I * 6) + DURM(28)
NEXT

'ROOF SLAB AND ASPHALT'
XM(26 + nofloor * 6) = XM(27) + lagm(11) * nofloor + lagm(10) * (nofloor - 1)
YM(26 + nofloor * 6) = XM(26 + nofloor * 6) + DURM(23)
XM(10) = XM(26 + (nofloor * 6)) + lagm(29)
YM(10) = XM(10) + DURM(10)

'brick/block, finishes,service'
IF NOFm = 1 THEN
XM(13) = XM(23) + lagm(14)
XM(14) = XM(23) + lagm(14)
ELSE
\[
XM(13) = XM(26 + (NOFm - 1) * 6) + \text{lagm}(14)
\]
\[
XM(14) = XM(26 + (NOFm - 1) * 6) + \text{lagm}(14)
\]
END IF
\[
XM(15) = XM(13) + \text{lagm}(21)
\]
\[
XM(16) = XM(13) + \text{lagm}(22)
\]
\[
XM(17) = XM(13) + \text{lagm}(23)
\]
\[
XM(18) = XM(13) + \text{lagm}(24)
\]
\[
XM(19) = XM(13) + \text{lagm}(25)
\]
\[
XM(20) = XM(13) + \text{lagm}(26)
\]
\[
XM(21) = XM(13) + \text{lagm}(27)
\]
\[
XM(22) = XM(13) + \text{lagm}(28)
\]
FOR I = 11 TO 31
YM(I) = XM(I) + DURM(I)
NEXT

'STAIRCASES'
I = 1
\[
XM(26 + \text{nfloor} * 6 + I) = YM(31)
\]
\[
YM(26 + \text{nfloor} * 6 + I) = XM(26 + \text{nfloor} * 6 + I) +
\text{DURM}(29)
\]
\[
XM(27 + \text{nfloor} * 6 + I) = XM(26 + \text{nfloor} * 6 + I) +
\text{lagm}(19)
\]
\[
YM(27 + \text{nfloor} * 6 + I) = XM(27 + \text{nfloor} * 6 + I) +
\text{DURM}(30)
\]
\[
XM(28 + \text{nfloor} * 6 + I) = XM(27 + \text{nfloor} * 6 + I) +
\text{lagm}(20)
\]
\[
YM(28 + \text{nfloor} * 6 + I) = XM(28 + \text{nfloor} * 6 + I) +
\text{DURM}(31)
\]
FOR I = 2 TO (nofloor - 2)
\[
XM(28 + \text{nfloor} * 6 + 3 * I - 4) = YM(28 + \text{nfloor} * 6 + 3 *
I - 4 - 1)
\]
\[
YM(28 + \text{nfloor} * 6 + 3 * I - 4) = XM(28 + \text{nfloor} * 6 + 3 *
I - 4) + \text{DURM}(29)
\]
\[
XM(29 + \text{nfloor} * 6 + 3 * I - 4) = XM(28 + \text{nfloor} * 6 + 3 *
I - 4) + \text{lagm}(19)
\]
\[
YM(29 + \text{nfloor} * 6 + 3 * I - 4) = XM(29 + \text{nfloor} * 6 + 3 *
I - 4) + \text{DURM}(30)
\]
\[
XM(30 + \text{nfloor} * 6 + 3 * I - 4) = XM(29 + \text{nfloor} * 6 + 3 *
I - 4) + \text{lagm}(20)
\]
\[
YM(30 + \text{nfloor} * 6 + 3 * I - 4) = XM(30 + \text{nfloor} * 6 + 3 *
I - 4) + \text{DURM}(31)
\]
NEXT

'STAIRCASE-INT. BLOCK-BRICK'
IF NOFlm = 1 THEN
\[
XM(11) = XM(29) + \text{lagm}(13)
\]
\[
XM(12) = XM(29) + \text{lagm}(13)
\]
\[
YM(11) = XM(11) + \text{DURM}(11)
\]
\[
YM(12) = XM(12) + \text{DURM}(12)
\]
ELSE
\[
XM(11) = XM(26 + \text{nfloor} * 6 + NOFlm - 1) + \text{lagm}(13)
\]
\[
XM(12) = XM(26 + \text{nfloor} * 6 + NOFlm - 1) + \text{lagm}(13)
\]
\[
YM(11) = XM(11) + \text{DURM}(11)
\]
\[
YM(12) = XM(12) + \text{DURM}(12)
\]
END IF
FOR I = 1 TO 9 * nofloor + 21
IF YM(I) > prM THEN
prM = YM(I)
END IF
NEXT
END SUB
DECLARE SUB constr1 (DUR!(), durm!(), lag!(), nofloor!, noflm!, stairdaym!, nofm!)
DECLARE SUB constr2 (lag!(), DUR!(), projdur!, nofloor!, PROJDURM!)
DECLARE SUB constn (DUR!(), durm!(), lag!(), nofloor!)
DECLARE SUB constrt (DUR!(), durm!(), nofloor!)
DECLARE SUB constrfs (lag(), nofloor!, DUR())
DIM lag(29), durm(31), DUR(31)

OPEN "new.dat" FOR INPUT AS #1
INPUT #1, new
CLOSE 1
IF new = 1 THEN
new = 0
neww = 0
END IF
OPEN "new.dat" FOR OUTPUT AS #1
PRINT #1, new
PRINT #1, neww
CLOSE 1

OPEN "NOOO.DAT" FOR INPUT AS #8
INPUT #8, nofloor
CLOSE #8
OPEN "OPT4.dat" FOR INPUT AS #10
INPUT #10, projdur, PROJDURM
CLOSE #10
OPEN "coptsifl.dat" FOR INPUT AS #5
INPUT #5, dummyl, dummy2, stairday, dummy3, dummy4, stairdaym
CLOSE #5
OPEN "nof.dat" FOR INPUT AS #11
INPUT #11, nof, nofl, nofm, noflm
CLOSE #11
ss = 0
pp = 1
OPEN "constr1.dat" FOR OUTPUT AS #1
OPEN "constr2.dat" FOR OUTPUT AS #2
OPEN "constr3.dat" FOR OUTPUT AS #3
OPEN "constr4.dat" FOR OUTPUT AS #4
OPEN "constr5.dat" FOR OUTPUT AS #5

OPEN "lagaa.dat" FOR INPUT AS #19
'lags for the mimimum duration'
FOR i = 1 TO 29
INPUT #19, lag(i)
NEXT
CLOSE 19

OPEN "durn.dat" FOR INPUT AS #19
FOR i = 1 TO 31
INPUT #19, DUR(i)
NEXT
CLOSE 19

OPEN "durm.dat" FOR INPUT AS #20
A15- 24
FOR i = 1 TO 31
INPUT #20, durm(i)
NEXT
CLOSE 20

CALL constr1(DUR(), durm(), lag(), nofloor, noflm, stairdaym, nofm)

CALL constr2(lag(), DUR(), projdur, nofloor, PROJDURM)

CALL constrfs(lag(), nofloor, DUR())

CALL constrt(DUR(), durm(), nofloor)

CALL constn(DUR(), durm(), lag(), nofloor)

CLOSE 1, 2, 3, 4, 5, 6, 7, 8
SUB constn (DUR(), durm(), lag(), nofloor)

'SLABS AND COLUMNS'

aa = 6 * nofloor - 5
bb = aa * 2
cc = 6 * (nofloor - 2)

T = 1
PRINT #5, "ge";
PRINT #5, USING "###.#"; 0;
FOR i = 1 TO 27
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0;
FOR i = 29 TO 32 + (6 * (T - 1))
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0;
FOR i = 34 + (6 * (T - 1)) TO 58 + aa
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0;
FOR i = 60 + aa TO 62 + bb + cc
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0

FOR T = 2 TO nofloor - 1
PRINT #5, "ge";
PRINT #5, USING "###.#"; 0;
FOR i = 1 TO 31 + 6 * (T - 1)
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0; 0; 0; 0;
FOR i = 36 + 6 * (T - 1) TO 61 + 6 * (T - 1)
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0;
FOR i = 63 + 6 * (T - 1) TO 62 + bb + cc
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0
NEXT

FOR T = 1 TO nofloor - 1
PRINT #5, "ge";
PRINT #5, USING "###.#"; 0;
FOR i = 1 TO 32 + (6 * (T - 1))
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0;
FOR i = 35 + (6 * (T - 1)) TO 63 + aa + (6 * (T - 1))
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0;
FOR i = 65 + aa + (6 * (T - 1)) TO 62 + bb + cc
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0

A15- 26
PRINT #5, "le";
PRINT #5, USING "###.#"; 0;
FOR i = 1 TO 63 + aa + (6 * (T - 1))
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0;
FOR i = 65 + aa + (6 * (T - 1)) TO 62 + bb + cc
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0
PRINT #5, "ge";
PRINT #5, USING "###.#"; 0;
FOR i = 1 TO 33 + (6 * (T - 1))
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0; 0;
FOR i = 36 + (6 * (T - 1)) TO 64 + aa + (6 * (T - 1))
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0;
FOR i = 66 + aa + (6 * (T - 1)) TO 62 + bb + cc
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0
PRINT #5, "le";
PRINT #5, USING "###.#"; 0;
FOR i = 1 TO 64 + aa + (6 * (T - 1))
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0;
FOR i = 66 + aa + (6 * (T - 1)) TO 62 + bb + cc
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0

'COL/ WALL'

PRINT #5, "ge";
PRINT #5, USING "###.#"; 0;
FOR i = 1 TO 32 + (6 * (T - 1))
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0; 0; 0; 0; 0;
FOR i = 38 + (6 * (T - 1)) TO 63 + aa + (6 * (T - 1))
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0;
FOR i = 65 + aa + (6 * (T - 1)) TO 62 + bb + cc
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0
PRINT #5, "le";
PRINT #5, USING "###.#"; 0;
FOR i = 1 TO 63 + aa + (6 * (T - 1))
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0;
FOR i = 65 + aa + (6 * (T - 1)) TO 62 + bb + cc
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0
PRINT #5, "ge";
PRINT #5, USING "###.#"; 0;
FOR i = 1 TO 35 + (6 * (T - 1))
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0; 0;
FOR i = 38 + (6 * (T - 1)) TO 66 + aa + (6 * (T - 1))
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0;
FOR i = 68 + aa + (6 * (T - 1)) TO 62 + bb + cc
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0
PRINT #5, "le";
PRINT #5, USING "###.#"; DUR(27) - durm(27);
FOR i = 1 TO 66 + aa + (6 * (T - 1))
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 1;
FOR i = 68 + aa + (6 * (T - 1)) TO 62 + bb + cc
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0
PRINT #5, "ge";
PRINT #5, USING "###.#"; 0;
FOR i = 1 TO 35 + (6 * (T - 1))
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0; 0; 0;
FOR i = 39 + (6 * (T - 1)) TO 65 + aa + (6 * (T - 1))
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0;
FOR i = 67 + aa + (6 * (T - 1)) TO 62 + bb + cc
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0
PRINT #5, "le";
PRINT #5, USING "###.#"; 0;
FOR i = 1 TO 65 + aa + (6 * (T - 1))
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0
PRINT A15- 28
PRINT #5, USING "###.#"; 0
FOR i = 67 + aa + (6 * (T - 1)) TO 62 + bb + cc
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0
NEXT

'ROOF SLAB'

PRINT #5, "ge";
PRINT #5, USING "###.#"; 0;
FOR i = 1 TO 36 + (6 * (nofloor - 1 - 1))
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0; 0; 0; 0;
FOR i = 41 + (6 * (nofloor - 1) - 1) TO 66 + aa + (6 * (nofloor - 1 - 1) + 1)
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0;
FOR i = 66 + aa + (6 * (nofloor - 1 - 1) + 1) TO 62 + bb + cc
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0

PRINT #5, "le";
PRINT #5, USING "###.#"; DUR(27) - durm(27);
FOR i = 1 TO 66 + aa + (6 * (nofloor - 1 - 1) + 1)
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 1;
FOR i = 66 + aa + (6 * (nofloor - 1) - 1) TO 62 + bb + cc
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0

'STAIRCASES'
FOR i = 1 TO nofloor - 2
IF i = 1 THEN
PRINT #5, "ge";
PRINT #5, USING "###.#"; DUR(31);
FOR j = 1 TO 31
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; -1;
FOR j = 33 TO 62 + aa
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 1;
FOR j = 64 + aa TO 63 + bb
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 1;
FOR j = 65 + bb TO 62 + bb + cc
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0
ELSE

A15-29
PRINT #5, "ge";
PRINT #5, USING "###.#"; DUR(31);
FOR j = 1 TO 62 + bb + (i - 1) * 3
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; -1; 1;
FOR j = 65 + bb + (i - 1) * 3 TO 65 + bb + cc / 2 + (i - 1) * 3
PRINT #5, USING "###.#"; 0;
NEXT
IF i = nofloor - 2 THEN
PRINT #5, USING "###.#"; 1
ELSE
PRINT #5, USING "###.#"; 1;
FOR j = 67 + bb + cc / 2 + (i - 1) * 3 TO 62 + bb + cc
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0
END IF
END IF

PRINT #5, "le";
PRINT #5, USING "###.#"; DUR(31) - durm(31);
FOR j = 1 TO 65 + bb + cc / 2 + (i - 1) * 3
PRINT #5, USING "###.#"; 0;
NEXT
IF i = nofloor - 2 THEN
PRINT #5, USING "###.#"; 1
ELSE
PRINT #5, USING "###.#"; 1;
FOR j = 67 + bb + cc / 2 + (i - 1) * 3 TO 62 + bb + cc
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0
END IF

PRINT #5, "ge";
PRINT #5, USING "###.#"; 0;
FOR j = 1 TO 63 + bb + (i - 1) * 3
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0; 0;
FOR j = 66 + bb + (i - 1) * 3 TO 63 + bb + cc / 2 + (i - 1) * 3
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0;
FOR j = 65 + bb + cc / 2 + (i - 1) * 3 TO 62 + bb + cc
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0

PRINT #5, "le";
PRINT #5, USING "###.#"; DUR(29) - durm(29);
FOR j = 1 TO 63 + bb + cc / 2 + (i - 1) * 3
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 1;
FOR j = 65 + bb + cc / 2 + (i - 1) * 3 TO 62 + bb + cc
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0
PRINT #5, "ge";
PRINT #5, USING "###.#"; 0;
FOR j = 1 TO 64 + bb + (i - 1) * 3
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0; 0;
FOR j = 67 + bb + (i - 1) * 3 TO 64 + bb + cc / 2 + (i - 1) * 3
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0;
FOR j = 66 + bb + cc / 2 + (i - 1) * 3 TO 66 + bb + cc
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0
PRINT #5, "le";
PRINT #5, USING "###.#"; DUR(30) - durm(30);
FOR j = 1 TO 64 + bb + cc / 2 + (i - 1) * 3
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 1;
FOR j = 66 + bb + cc / 2 + (i - 1) * 3 TO 62 + bb + cc
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0
NEXT
PRINT #5, "le";
PRINT #5, USING "###.#"; DUR(30) - durm(30);
FOR j = 1 TO 65 + bb + cc / 2 + (i - 1) * 3
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 1;
FOR j = 67 + bb + cc / 2 + (i - 1) * 3 TO 62 + bb + cc
PRINT #5, USING "###.#"; 0;
NEXT
PRINT #5, USING "###.#"; 0
END SUB
SUB constr1 (DUR(), durmO, lag(), nofloor, noflm,
stairdaym, nofm) STATIC
aa = 6 * nofloor - 5
bb = aa * 2
cc = 6 * (nofloor - 2)

PRINT #1, "ge";
PRINT #1, USING "###.#"; lag(1);
PRINT #1, USING "###.#"; 0; -1; 1;
FOR i = 4 TO 32 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR i = 34 + aa TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0

PRINT #1, "ge";
PRINT #1, USING "###.#"; lag(2);
PRINT #1, USING "###.#"; 0; 0; -1; 1;
FOR i = 5 TO 33 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR i = 35 + aa TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0

PRINT #1, "ge";
PRINT #1, USING "###.#"; 0;
PRINT #1, USING "###.#"; 0; 0; -1; 1;
FOR i = 6 TO 34 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0;
FOR i = 36 + aa TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0

PRINT #1, "eq";
PRINT #1, USING "###.#"; 0;
PRINT #1, USING "###.#"; 0; 0; 0; 0; -1; 1;
FOR i = 7 TO 35 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0;
FOR i = 37 + aa TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0

'additional'
PRINT #1, "ge";
PRINT #1, USING "###.#"; 0;
PRINT #1, USING "###.#"; 0; 0; 0; 0; 0; -1; 1;

A15-32
FOR I = 8 TO 35 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0;
FOR I = 37 + aa TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0;
PRINT #1, "ge";
PRINT #1, USING "###.#"; lag(5);
FOR I = 8 TO 36 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR I = 38 + aa TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0;
'additional'
PRINT #1, "ge";
PRINT #1, USING "###.#"; lag(5);
FOR I = 8 TO 36 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0;
FOR I = 36 + aa TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0;
PRINT #1, "ge";
PRINT #1, USING "###.#"; lag(6);
FOR I = 9 TO 37 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR I = 39 + aa TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0;
PRINT #1, "ge";
PRINT #1, USING "###.#"; lag(7);
FOR I = 10 TO 38 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR I = 40 + aa TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0;
PRINT #1, "ge";
PRINT #1, USING "###.#"; lag(8);
PRINT #1, USING "###.#"; 0;
A15-33
FOR i = 11 TO 39 + aa
PRINT #1, USING "####.####"; 0;
NEXT
PRINT #1, USING "####.####"; 1;
FOR i = 41 + aa TO 62 + bb + cc
PRINT #1, USING "####.####"; 0;
NEXT
PRINT #1, USING "####.####"; 0
PRINT #1, "ge";
PRINT #1, USING "####.####"; laq(9);
PRINT #1, USING "####.####"; 0; 0; 0; 0; 0; 0; 0; 0; -1;
FOR i = 11 TO 23
PRINT #1, USING "####.####"; 0;
NEXT
PRINT #1, USING "####.####"; 1;
FOR i = 25 TO 40 + aa
PRINT #1, USING "####.####"; 0;
NEXT
PRINT #1, USING "####.####"; 1;
FOR i = 42 + aa TO 62 + bb + cc
PRINT #1, USING "####.####"; 0;
NEXT
PRINT #1, USING "####.####"; 0
PRINT #1, "ge";
PRINT #1, USING "####.####"; 0;
FOR i = 1 TO 23
PRINT #1, USING "####.####"; 0;
NEXT
PRINT #1, USING "####.####"; 0; 0;
FOR i = 26 TO 54 + aa
PRINT #1, USING "####.####"; 0;
NEXT
PRINT #1, USING "####.####"; 0;
FOR i = 56 + aa TO 62 + bb + cc
PRINT #1, USING "####.####"; 0;
NEXT
PRINT #1, USING "####.####"; 0
PRINT #1, "ge";
PRINT #1, USING "####.####"; 0;
FOR i = 1 TO 24
PRINT #1, USING "####.####"; 0;
NEXT
PRINT #1, USING "####.####"; 0; 0;
FOR i = 27 TO 55 + aa
PRINT #1, USING "####.####"; 0;
NEXT
PRINT #1, USING "####.####"; 0;
FOR i = 57 + aa TO 62 + bb + cc
PRINT #1, USING "####.####"; 0;
NEXT
PRINT #1, USING "####.####"; 0

A15- 34
PRINT #1, "ge";
PRINT #1, USING "###.#"; lag(10);
FOR i = 1 TO 23
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; -1; 0; 0; 0; 1;
FOR i = 29 TO 54 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR i = 56 + aa TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0

PRINT #1, "ge";
PRINT #1, USING "###.#"; 0;
FOR i = 1 TO 26
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0; 0;
FOR i = 29 TO 58 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0;
FOR i = 60 + aa TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0

PRINT #1, "ge";
PRINT #1, USING "###.#"; 0;
FOR i = 1 TO 26
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0; 0; 0;
FOR i = 30 TO 57 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0;
FOR i = 59 + aa TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0

'slab (1)'
PRINT #1, "ge";
PRINT #1, USING "###.#"; lag(11);
FOR i = 1 TO 27
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; -1; 0; 0; 0; 0; 1;
FOR i = 34 TO 59 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR i = 61 + aa TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT

A15- 35
PRINT #1, USING "###.#"; 0

PRINT #1, "le";
PRINT #1, USING "###.#"; DUR(27) - durm(27);
FOR i = 1 TO 27
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0; 0; 0; 0; 0; 0;
FOR i = 34 TO 59 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR i = 61 + aa TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0

'COL (1-2)-SLAB(2)'

FOR ii = 1 TO nofloor - 2
PRINT #1, "ge";
PRINT #1, USING "###.#"; lag(11);
FOR i = 1 TO 6 * ii + 30
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; -1; 0; 1;
FOR i = 6 * ii + 34 TO 6 * ii + 62 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR i = 6 * ii + 64 + aa TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0
NEXT

FOR ii = 1 TO nofloor - 1
PRINT #1, "ge";
PRINT #1, USING "###.#"; DUR(27) - durm(27);
FOR i = 1 TO 6 * ii + 62 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR i = 6 * ii + 64 + aa TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0
NEXT

FOR ii = 1 TO nofloor - 1
PRINT #1, "ge";
PRINT #1, USING "###.#"; lag(10);
FOR i = 1 TO 6 * (ii - 1) + 32
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; -1; 0; 0; 0; 1;
FOR i = 6 * (ii - 1) + 38 TO 6 * (ii - 1) + 64 + aa
PRINT #1, USING "###.#"; 0;
NEXT

A15- 36
BEGIN
PRINT #1, USING "###.#"; 1;
FOR i = 6 * (ii - 1) + 66 + aa TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0
NEXT
FOR ii = 1 TO nofloor - 1
PRINT #1, "le";
PRINT #1, USING "###.#"; DUR(23) - durm(23);
FOR i = 1 TO 6 * (ii - 1) + 64 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR i = 6 * (ii - 1) + 66 + aa TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0
NEXT
PRINT #1, "ge";
PRINT #1, USING "###.#"; lag(12);
FOR i = 1 TO 29
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1; 0; 0; -1;
FOR i = 34 TO 32 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0;
FOR i = 34 + aa TO 65 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR i = 67 + aa TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0
PRINT #1, "ge";
PRINT #1, USING "###.#"; 0;
FOR i = 1 TO 29
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0;
FOR i = 32 TO 60 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0;
FOR i = 63 + aa TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0
PRINT #1, "ge";
PRINT #1, USING "###.#"; 0;
FOR i = 1 TO 30
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0; 0;
FOR i = 33 TO 61 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0;
FOR i = 63 + aa TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0
PRINT #1, "ge";
PRINT #1, USING "###.#"; lag(29);
FOR i = 1 TO 10
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR i = 12 TO 31 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; -1;
FOR i = 33 + aa TO 62 + bb
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR i = 64 + bb TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0
PRINT #1, "le";
PRINT #1, USING "###.#"; DUR(23) - durm(23);
FOR i = 1 TO 62 + bb
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR i = 64 + bb TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0
PRINT #1, "ge";
PRINT #1, USING "###.#"; lag(ll);
FOR i = 1 TO 29 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; -1; 0; 1;
FOR i = 33 + aa TO 60 + bb
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR i = 62 + bb TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0
PRINT #1, "le";
PRINT #1, USING "###.#"; DUR(27) - durm(27);
FOR i = 1 TO 29 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0; 0; 0;
FOR i = 33 + aa TO 60 + bb
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR i = 62 + bb TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0
IF noflm = 1 THEN
PRINT #1, "ge";
PRINT #1, USING "###.#"; lag(13);
FOR i = 1 TO 11
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR i = 13 TO 29
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; -1;
FOR i = 31 TO 60 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1; 0;
FOR i = 63 + aa TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0
PRINT #1, "ge";
PRINT #1, USING "###.#"; lag(13);
FOR i = 1 TO 12
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR i = 14 TO 29
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; -1;
FOR i = 31 TO 60 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR i = 62 + aa TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0
ELSE
PRINT #1, "ge";
PRINT #1, USING "###.#"; lag(13);
FOR i = 1 TO 11
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR i = 13 TO 29
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0;
FOR i = 31 TO 60 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0; 0;
FOR i = 63 + aa TO 63 + bb + (nofm - 2) * 3
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; -1;
FOR i = 65 + bb + (nofm - 2) * 3 TO 62 + bb + cc + 1 - 3 * (nofloor - 2) + 3 * (nofm - 2)
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR i = 65 + bb + cc - (3 * nofloor - 2) + 3 * (nofm - 2) TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0
PRINT #1, "ge";
PRINT #1, USING "###.#"; lag(13);
FOR i = 1 TO 12
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR i = 14 TO 29
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0;
FOR i = 31 TO 60 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0; 0;
FOR i = 63 + aa TO 63 + bb + (nofm - 2) * 3
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; -1;
FOR i = 65 + bb + (nofm - 2) * 3 TO 62 + bb + cc + 1 - 3 * (nofloor - 2) + 3 * (nofm - 2)
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR i = 65 + bb + cc - 3 * (nofloor - 2) + 3 * (nofm - 2) TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0
END IF

IF nofm = 0 THEN
PRINT #1, "ge";
PRINT #1, USING "###.#"; lag(14);
FOR i = 1 TO 13
PRINT #1, USING "###.#"; 0;
A15- 40
NEXT
PRINT #1, USING "###.###"; 1;
FOR i = 15 TO 23
PRINT #1, USING "###.###"; 1;
NEXT
PRINT #1, USING "###.###"; -1;
FOR i = 25 TO 54 + aa
PRINT #1, USING "###.###"; 0;
NEXT
PRINT #1, USING "###.###"; 1;
FOR i = 56 + aa TO 62 + bb + cc
PRINT #1, USING "###.###"; 0;
NEXT
PRINT #1, USING "###.###"; 0

PRINT #1, "ge";
PRINT #1, USING "###.###"; 1;
FOR i = 1 TO 14
PRINT #1, USING "###.###"; 0;
NEXT
PRINT #1, USING "###.###"; 1;
FOR i = 16 TO 23
PRINT #1, USING "###.###"; 0;
NEXT
PRINT #1, USING "###.###"; -1;
FOR i = 25 TO 54 + aa
PRINT #1, USING "###.###"; 0;
NEXT
PRINT #1, USING "###.###"; 1;
FOR i = 56 + aa TO 62 + bb + cc
PRINT #1, USING "###.###"; 0;
NEXT
PRINT #1, USING "###.###"; 0

ELSE
PRINT #1, "ge";
PRINT #1, USING "###.###"; 1;
FOR i = 1 TO 13
PRINT #1, USING "###.###"; 0;
NEXT
PRINT #1, USING "###.###"; 1;
FOR i = 15 TO 26 + nofm * 6
PRINT #1, USING "###.###"; 0;
NEXT
PRINT #1, USING "###.###"; -1;
FOR i = 28 + nofm * 6 TO 58 + bb
PRINT #1, USING "###.###"; 0;
NEXT
PRINT #1, USING "###.###"; 1;
FOR i = 60 + bb TO 62 + bb + cc
PRINT #1, USING "###.###"; 0;
NEXT
PRINT #1, USING "###.###"; 0

PRINT #1, "ge";
PRINT #1, USING "###.###"; 1;
FOR i = 1 TO 14
PRINT #1, USING "###.###"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR i = 16 TO 26 + nofm * 6
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; -1;
FOR i = 28 + nofm * 6 TO 58 + bb
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 1;
FOR i = 60 + bb TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0
END IF

PRINT #1, "ge";
PRINT #1, USING "###.#"; 0;
FOR i = 1 TO 14
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0;
FOR i = 16 TO 23
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0;
FOR i = 25 TO 54 + aa
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0;
FOR i = 56
FOR i = 56 + aa TO 62 + bb + cc
PRINT #1, USING "###.#"; 0;
NEXT
PRINT #1, USING "###.#"; 0
END SUB
SUB constr2 (lag(), DUR(), projdur, nofloor, PROJDURM)
STATIC
'Xp'
aa = 6 * nofloor - 5
bb = aa * 2
cc = 6 * (nofloor - 2)
PRINT #2, "ge";
PRINT #2, USING "###.#"; DUR(10);
PRINT #2, USING "###.#"; 1;
FOR i = 2 TO 10
PRINT #2, USING "###.#"; 0;
NEXT
PRINT #2, USING "###.#"; -1;
FOR i = 12 TO 41 + aa
PRINT #2, USING "###.#"; 0;
NEXT
PRINT #2, USING "###.#"; 1;
FOR i = 43 + aa TO 62 + bb + cc
PRINT #2, USING "###.#"; 0;
NEXT
PRINT #2, USING "###.#"; 0
PRINT #2, "ge";
PRINT #2, USING "###.#"; DUR(11);
PRINT #2, USING "###.#"; 1;
FOR i = 2 TO 11
PRINT #2, USING "###.#"; 0;
NEXT
PRINT #2, USING "###.#"; -1;
FOR i = 13 TO 42 + aa
PRINT #2, USING "###.#"; 0;
NEXT
PRINT #2, USING "###.#"; 1;
FOR i = 44 + aa TO 62 + bb + cc
PRINT #2, USING "###.#"; 0;
NEXT
PRINT #2, USING "###.#"; 0
PRINT #2, "ge";
PRINT #2, USING "###.#"; DUR(12);
PRINT #2, USING "###.#"; 1;
FOR i = 2 TO 12
PRINT #2, USING "###.#"; 0;
NEXT
PRINT #2, USING "###.#"; -1;
FOR i = 14 TO 43 + aa
PRINT #2, USING "###.#"; 0;
NEXT
PRINT #2, USING "###.#"; 1;
FOR i = 45 + aa TO 62 + bb + cc
PRINT #2, USING "###.#"; 0;
NEXT
PRINT #2, USING "###.#"; 0
PRINT #2, "ge";
PRINT #2, USING "###.#"; DUR(15);
PRINT #2, USING "###.#"; 1;
FOR i = 2 TO 15
PRINT #2, USING "####.#"; 0;
NEXT
PRINT #2, USING "####.#"; -1;
FOR i = 17 TO 46 + aa
PRINT #2, USING "####.#"; 0;
NEXT
PRINT #2, USING "####.#"; 1;
FOR i = 48 + aa TO 62 + bb + cc
PRINT #2, USING "####.#"; 0;
NEXT
PRINT #2, USING "####.#"; 0
PRINT #2, "ge";
PRINT #2, USING "####.#"; DUR(16);
PRINT #2, USING "####.#"; 1;
FOR i = 2 TO 16
PRINT #2, USING "####.#"; 0;
NEXT
PRINT #2, USING "####.#"; -1;
FOR i = 18 TO 47 + aa
PRINT #2, USING "####.#"; 0;
NEXT
PRINT #2, USING "####.#"; 1;
FOR i = 49 + aa TO 62 + bb + cc
PRINT #2, USING "####.#"; 0;
NEXT
PRINT #2, USING "####.#"; 0
PRINT #2, "ge";
PRINT #2, USING "####.#"; DUR(17);
PRINT #2, USING "####.#"; 1;
FOR i = 2 TO 17
PRINT #2, USING "####.#"; 0;
NEXT
PRINT #2, USING "####.#"; -1;
FOR i = 19 TO 48 + aa
PRINT #2, USING "####.#"; 0;
NEXT
PRINT #2, USING "####.#"; 1;
FOR i = 50 + aa TO 62 + bb + cc
PRINT #2, USING "####.#"; 0;
NEXT
PRINT #2, USING "####.#"; 0
PRINT #2, "ge";
PRINT #2, USING "####.#"; DUR(18);
PRINT #2, USING "####.#"; 1;
FOR i = 2 TO 18
PRINT #2, USING "####.#"; 0;
NEXT
PRINT #2, USING "####.#"; -1;
FOR i = 20 TO 49 + aa
PRINT #2, USING "####.#"; 0;
NEXT
PRINT #2, USING "####.#"; 1;
FOR i = 51 + aa TO 62 + bb + cc
PRINT #2, USING "####.#"; 0;
NEXT

A15- 44
PRINT #2, USING "###.#"; 0
PRINT #2, "ge";
PRINT #2, USING "###.#"; DUR(19);
PRINT #2, USING "###.#"; 1;
FOR i = 2 TO 19
PRINT #2, USING "###.#"; 0;
NEXT
PRINT #2, USING "###.#"; -1;
FOR i = 21 TO 50 + aa
PRINT #2, USING "###.#"; 0;
NEXT
PRINT #2, USING "###.#"; 1;
FOR i = 52 + aa TO 62 + bb + cc
PRINT #2, USING "###.#"; 0;
NEXT
PRINT #2, USING "###.#"; 0
PRINT #2, "ge";
PRINT #2, USING "###.#"; DUR(20);
PRINT #2, USING "###.#"; 1;
FOR i = 2 TO 20
PRINT #2, USING "###.#"; 0;
NEXT
PRINT #2, USING "###.#"; -1;
FOR i = 22 TO 51 + aa
PRINT #2, USING "###.#"; 0;
NEXT
PRINT #2, USING "###.#"; 1;
FOR i = 53 + aa TO 62 + bb + cc
PRINT #2, USING "###.#"; 0;
NEXT
PRINT #2, USING "###.#"; 0
PRINT #2, "ge";
PRINT #2, USING "###.#"; DUR(21);
PRINT #2, USING "###.#"; 1;
FOR i = 2 TO 21
PRINT #2, USING "###.#"; 0;
NEXT
PRINT #2, USING "###.#"; -1;
FOR i = 23 TO 52 + aa
PRINT #2, USING "###.#"; 0;
NEXT
PRINT #2, USING "###.#"; 1;
FOR i = 54 + aa TO 62 + bb + cc
PRINT #2, USING "###.#"; 0;
NEXT
PRINT #2, USING "###.#"; 0
PRINT #2, "ge";
PRINT #2, USING "###.#"; DUR(22);
PRINT #2, USING "###.#"; 1;
FOR i = 2 TO 22
PRINT #2, USING "###.#"; 0;
NEXT
PRINT #2, USING "###.#"; -1;
FOR i = 24 TO 53 + aa
PRINT #2, USING "####.#"; 0;
NEXT
PRINT #2, USING "####.#"; 1;
FOR i = 55 + aa TO 62 + bb + cc
PRINT #2, USING "####.#"; 0;
NEXT
PRINT #2, USING "####.#"; 0

PRINT #2, "ge";
PRINT #2, USING "####.#"; PROJDURM;
PRINT #2, USING "####.#"; 1;
FOR i = 2 TO 62 + bb + cc
PRINT #2, USING "####.#"; 0;
NEXT
PRINT #2, USING "####.#"; 0

PRINT #2, "le";
PRINT #2, USING "####.#"; projdur;
PRINT #2, USING "####.#"; 1;
FOR i = 2 TO 62 + bb + cc
PRINT #2, USING "####.#"; 0;
NEXT
PRINT #2, USING "####.#"; 0

PRINT #2, "le";
PRINT #2, USING "####.#"; projdur;
PRINT #2, USING "####.#"; 1;
FOR i = 2 TO 62 + bb + cc
PRINT #2, USING "####.#"; 0;
NEXT
PRINT #2, USING "####.#"; 0

END SUB
SUB constrfs (lag(), nofloor, DUR()) STATIC
aa = 6 * nofloor - 5
bb = aa * 2
cc = 6 * (nofloor - 2)
'finish service (ge)'
PRINT #3, "ge";
PRINT #3, USING "###.#"; lag(21);
FOR i = 1 TO 13
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; -1; 0; 1;
FOR i = 17 TO 44 + aa
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; 1;
FOR i = 46 + aa TO 62 + bb + cc
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; 0
PRINT #3, "ge";
PRINT #3, USING "###.#"; lag(22);
FOR i = 1 TO 13
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; -1; 0; 0; 1;
FOR i = 18 TO 44 + aa
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; 1;
FOR i = 46 + aa TO 62 + bb + cc
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; 0
PRINT #3, "ge";
PRINT #3, USING "###.#"; lag(23);
FOR i = 1 TO 13
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; -1; 0; 0; 0; 1;
FOR i = 19 TO 44 + aa
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; 1;
FOR i = 46 + aa TO 62 + bb + cc
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; 0
PRINT #3, "ge";
PRINT #3, USING "###.#"; lag(24);
FOR i = 1 TO 13
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; -1; 0; 0; 0; 0; 1;
FOR i = 20 TO 44 + aa
PRINT #3, USING "###.#"; 0;
NEXT

A15- 47
PRINT #3, USING "###.#"; 1;
FOR i = 46 + aa TO 62 + bb + cc
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; 0

PRINT #3, "ge";
PRINT #3, USING "###.#"; lag(25);
FOR i = 1 TO 13
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; -1; 0; 0; 0; 0; 0; 0; 1;
FOR i = 21 TO 44 + aa
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; 1;
FOR i = 46 + aa TO 62 + bb + cc
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; 0

PRINT #3, "ge";
PRINT #3, USING "###.#"; lag(26);
FOR i = 1 TO 13
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; -1; 0; 0; 0; 0; 0; 0; 0; 1;
FOR i = 22 TO 44 + aa
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; 1;
FOR i = 46 + aa TO 62 + bb + cc
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; 0

PRINT #3, "ge";
PRINT #3, USING "###.#"; lag(27);
FOR i = 1 TO 13
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; -1; 0; 0; 0; 0; 0; 0; 0; 0; 1;
FOR i = 23 TO 44 + aa
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; 1;
FOR i = 46 + aa TO 62 + bb + cc
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; 0

PRINT #3, "ge";
PRINT #3, USING "###.#"; lag(28);
FOR i = 1 TO 13
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; -1; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1;
FOR i = 24 TO 44 + aa
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; 1;
FOR i = 46 + aa TO 62 + bb + cc
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; 0
PRINT #3, "ge";
PRINT #3, USING "###.#"; lag(28);
FOR i = 1 TO 14
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; -1; 0; 0; 0; 0; 0; 0; 0; 0; 1;
FOR i = 24 TO 45 + aa
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; 1;
FOR i = 47 + aa TO 62 + bb + cc
PRINT #3, USING "###.#"; 0;
NEXT
PRINT #3, USING "###.#"; 0
END SUB
SUB constnt (DUR(), durm(), nofloor) STATIC
aa = 6 * nofloor - 5
bb = aa * 2
cc = 6 * (nofloor - 2)
PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(1) - durm(1);
FOR i = 1 TO 32 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 34 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0
PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(2) - durm(2);
FOR i = 1 TO 33 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 35 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0
PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(3) - durm(3);
FOR i = 1 TO 34 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 36 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0
PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(4) - durm(4);
FOR i = 1 TO 35 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 37 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0
PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(5) - durm(5);
FOR i = 1 TO 36 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 38 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0
PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(6) - durm(6);
FOR i = 1 TO 37 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 39 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0

PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(7) - durm(7);
FOR i = 1 TO 38 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 40 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0

PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(8) - durm(8);
FOR i = 1 TO 39 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 41 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0

PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(9) - durm(9);
FOR i = 1 TO 40 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 42 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0

PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(10) - durm(10);
FOR i = 1 TO 41 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 43 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0

PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(11) - durm(11);
FOR i = 1 TO 42 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0
A15- 51
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 44 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0
PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(12) - durm(12);
FOR i = 1 TO 43 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 45 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0
PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(13) - durm(13);
FOR i = 1 TO 44 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 46 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0
PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(14) - durm(14);
FOR i = 1 TO 45 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 47 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0
PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(15) - durm(15);
FOR i = 1 TO 46 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 48 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0
PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(16) - durm(16);
FOR i = 1 TO 47 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 49 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0

PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(17) - durm(17);
FOR i = 1 TO 48 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 50 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0

PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(18) - durm(18);
FOR i = 1 TO 49 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 51 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0

PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(19) - durm(19);
FOR i = 1 TO 50 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 52 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0

PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(20) - durm(20);
FOR i = 1 TO 51 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 53 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0

PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(21) - durm(21);
FOR i = 1 TO 52 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 54 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0

A15-53
PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(22) - durm(22);
FOR i = 1 TO 53 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 55 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0
PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(23) - durm(23);
FOR i = 1 TO 63 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 65 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0
PRINT #4, "le";
PRINT #4, USING "###.#"; 0;
FOR i = 1 TO 55 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0;
FOR i = 57 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0
PRINT #4, "le";
PRINT #4, USING "###.#"; 0;
FOR i = 1 TO 56 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0;
FOR i = 58 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0
PRINT #4, "le";
PRINT #4, USING "###.#"; 0;
FOR i = 1 TO 57 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0;
FOR i = 59 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0
PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(27) - durm(27);
A15-54
FOR i = 1 TO 58 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 60 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0
PRINT #4, "le";
PRINT #4, USING "###.#"; 0;
FOR i = 1 TO 59 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0;
FOR i = 61 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0
PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(29) - durm(29);
FOR i = 1 TO 60 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1; 0;
FOR i = 63 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0
PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(30) - durm(30);
FOR i = 1 TO 61 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 63 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0
PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(31) - durm(31);
FOR i = 1 TO 62 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 64 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0
PRINT #4, "le";
PRINT #4, USING "###.#"; 0;
FOR i = 1 TO 62 + aa
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0;

A15- 55
FOR i = 64 + aa TO 62 + bb + cc
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0
PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(23) - durm(23);
FOR i = 1 TO 62 + bb
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 1 TO cc - 1
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0
PRINT #4, "le";
PRINT #4, USING "###.#"; DUR(23) - durm(23);
FOR i = 1 TO 62 + bb
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 1;
FOR i = 1 TO cc - 1
PRINT #4, USING "###.#"; 0;
NEXT
PRINT #4, USING "###.#"; 0

END SUB
OPTIMUM

dimension dur(31),nxi(500),iss(500,2),c(500,500),EE(500)
real m,ggg,hindir,dirtot,dirtotm,new_bb
real cost_increase,new_ind,new_indl,new_total,ind_dec
double precision B(1000),A(1000,1000),XX,xm,zcm,ck
real d(1000),icj(1000),ratio(1000),mustif,old_dir
real dir(31),cost_incr(32),tol,cv,nofloorl
INTEGER t, k ,jm,n,ul,TA,new_b,gfa,f,tut,lm,nofloor
INTEGER I1,ITER
character*1 kode(500), emel(2)
data emel/'l','g'/
NPR=0
cost_increase=0.0
tol =0.00001
cv=1000.0
iter=0
lm=0
tut=0
open (7,file='new.dat',status='old')
read (7,*) new_b
read(7,*) new_bb
close (7)
if (new_b .eq.0) then
open (ll,file=' projco.dat',status='old')
write(11,*) 0
write (11,*) 1
close (11)
open (8,file='data.dat',status='old')
else
open (8,file='data.dat',status='old')
do 10 i=1,10000
read (8,'(/)',end=999)
10 continue
999 backspace (unit=8)

endif
open (7,file='nooo.dat',status='old')
read (7,*) nofloorl
close (7)
nofloor=int(nofloorl)
open (17,file='tott2.dat',status='old')
read (17,*) pr
read (17,*) prm
read (17,*) dirtot
deroot
read (17,*) hindir
close (17)
kod=1
knt=0
aa=6*nofloor-5
bb=2*aa
cc=6*(nofloor-2)

c 'n=number of variables, m=number of constraints'

n=18*NOFLOOR+41
m=17*NOFLOOR+58+4*nofloor-8+3+3
murti=4*nofloor-8+3+3

open (22,file='opt2.dat',status='old')
522 format (f15.2/)
do 709 jj=1,n
backspace (unit=22,iostat=i,err=1901)
read (22,522) d(jj)
ratio(jj)=d(jj)
709 continue
1901 close (22)
close(24)
close (23)
nl=n
nn=n
ml=m+1

open(10,file='constr1.dat',status='old',form='formatted')
onopen (23,file='dd.dat',status='old',form='formatted')
33 format (50(1x,1x,f5.1/))
do 811 k=2,26+murti
kk=k
backspace (unit=10,iostat=i,err=8901)
read (10,33) kode(kk),ggg
b(kk)=ggg
write (23,33) kode(kk),b(kk)
811 continue
close (10)
8901 open(10,file='constr1.dat',status='old',form='formatted')
34 format (50(7x,500f5.1/))
backspace (unit=10,iostat=i,err=901)
do 9011 k=2,26+murti
read(10,34)(c(k,jj),jj=l,N)
9011 continue
901 if (i.gt.26+murti) then
close (10)
endif

open (12,file='constr3.dat',status='old',form='formatted')
do 815 mu=1,8
mku=mu+26+murti
backspace (unit=12,iostat=i,err=3901)
read (12,33) kode(mku),ggg
b(mku)=ggg
815 continue
close (12)
3901 open(12,file='constr3.dat',status='old',form='formatted')
64 format (50(7x,500f5.1/))
backspace (unit=12,iostat=i,err=301)
t=26+murti
do 3011 ml=l,8
read(12,64)(c(ml+t,jj),jj=1,N)
3011 continue
301 if (i.gt.8) then
 close (12)
endif

open (13,file='constr4.dat',status='old',form='formatted')
do 818 uu=l,33
 muu=uu+34+murti
 backspace (unit=13,iostat=i,err=4901)
 read (13,33) kode(muu),ggg
 b(muu)=ggg
818 continue
4901 close (13)
open (13,file='constr4.dat',status='old',form='formatted')
backspace (unit=13,iostat=i,err=401)
t=34+murti
do 4011 ul=l,33
 read(13,64)(c(ul+t,jj),jj=1,N)
4011 continue
401 if (i.gt.33) then
 close (13)
endif

open (13,file='constr5.dat',status='old',form='formatted')
663 format (319(al,1x,f5.1/))
664 format (319(7x,500f5.1/))
do 8108 uuu=l,(17*NOFLOOR-21)
 mcu=uuu+67+murti
 backspace (unit=13,iostat=i,err=5901)
 read (13,663) kode(mcu),g1gg
 b(mcu)=g1gg
8108 continue
5901 close (13)
open(13,file='constr5.dat',status='old',form='formatted')
backspace (unit=13,iostat=i,err=17901)
ta=67+murti
do 54011 ul=l,(17*nofloor-21)
 read(13,664)(c(ul+ta,jj),jj=1,N)
54011 continue
17901 if (i.gt.((17*nofloor-21))) then
 close (13)
endif

open (11,file='constr2.dat',status='old',form='formatted')
do 813 ku=1,13
 kku=ku+57+(17*NOFLOOR-21)+murti
 backspace (unit=11,iostat=i,err=2901)
 read (11,33) kode(kku),ggg
b(kku)=ggg
if ((new_b .eq. 1) .and. (ku.eq.13)) then
b(kku)=new_bb
endif

813 continue

2901 open (11, file= 'constr2.dat', status= 'old', form= 'formatted')
54 format (50(7x, 500f5.1/))
backspace (unit= 11, iostat= i, err= 201)
t=57+(17*NOFLOOR-21)+murti
do 2011 kl= 1, 13
read(11, 54) (c(kl+t, jj), jj= 1, N)
2011 continue
201 if (i.gt.13) then
close (11)
endif

do 331 i= 1, n
i1= i+knt
iss(i, 1)= i1
iss(i, 2)= 0
icj(i1)= d(i)
do 332 i2= 2, ml
a(i2, i1)= c(i2, i)
332 continue
331 continue

do 410 i= 2, ml
if (ichar(kode(i)) .ne. ichar(emel(2))) THEN
goto 410
ENDIF
n= n+1
a(i, n)= -1
410 continue
av= 0

do 420 i= 2, ml
n= n+1
a(i, n)= 1
nxi(i)= n
if (ichar(kode(i)) .eq. ichar(emel(1))) THEN
goto 420
ENDIF
av= 1
icj(n)= cv
420 continue

print *, b(kku)
iter= 0
if (iter .eq. 0) THEN
A 15-60
goto 4444
ENDIF

4444 n1=1
n2=6

43 if ((n2-n) .le. 0) then
goto 45
endif
n2=n

45 do 5500 j=n1,n2
if ((n2-n) .ge. 0) then
goto 5500
ENDIF
n1=n1+6
n2=n2+6
goto 43
5500 continue

if (npr .ne. 2) then
goto 21
ENDIF

do 234 jj=1,nn
d(jj)=0
do 235 i=2,ml
k=nxi(i)
if (k .eq. iss(jj,1)) then
d(jj)=b(i)
endif
if (k .eq. iss(jj,2)) then
d(jj) = -b(i)
ENDIF
235 continue
234 continue

open (12,file=' durn.dat',status='old')
do 1880 j=1, 31
backspace (unit=12,iostat=i,err=19001)
read(12,121)dur(j)
1880 continue
19001 close (12)
121 format (f9.2/)
open (10,file='dir.dat',status='old')
do 18800 j=1, 31
backspace (unit=10,iostat=i,err=18801)
read(10,121)dir(j)
18800 continue
18801 close (10)
do 1982 i=1,62+bb+cc
cost_incr(i)=ratio(i)*d(i)
cost_increase = cost_increase + cost_incr(i)

1982 continue
open (11, file=' cinc.dat', status='old')
write(11,*) cost_increase
do 1995 i=1,62+bb+cc
write(11,*) cost_incr(i), dir(i), ratio(i), d(i)
1995 continue
open (11, file=' projco.dat', status='old')
read (11,*) old_total
read (11,*) old_dir
close (11)
mustif = cost_increase - old_dir
print *, mustif
if (mustif .ge. 990.000) then
open (2, file=' trial.dat', status='old')
write (2,*) 1.0
close (2)
WRITE (8,*) 'This project can not be accelerated more.'
write (8,*)
close (8)
goto 7777
endif
write (8,*) 'optimal solution:/objective function:', b(1)
write (8,*) 'project duration is:', d(1), 'days'
new_ind = hindir/pr
hh = d(1) - pr
if (hh .lt. 0.0) then
goto 666
else
new_ind = 0
endif
666 ind_dec = new_ind * (pr - d(1))
new_ind1 = hindir - new_ind * (pr - d(1))
WRITE (8,*) 'direct project cost increase is:', cost_increase
WRITE (8,*) 'indirect project cost decrease is:', ind_dec
WRITE (8,*) 'project cost increase is:', cost_increase - new_ind
WRITE (8,*) 'new direct project cost is:',
cost_increase + dirtot
WRITE (8,*) 'new indirect project cost is:', new_ind1
new_total = dirtot + cost_increase + new_ind1
WRITE (8,*) 'new total project cost is:', new_total
open (11, file=' projco.dat', status='old')
read (11,*) old_total
close (11)
open (7, file=' new.dat', status='old')
read (7,*) new_b
close (7)

if (new_b .eq. 1) then
open (10, file=' X2.dat', status='old')
WRITE (8,*) 'activity to be accelerated:'
do 83000 f=1,NN

A 15-62
if (f.gt.(32+aa)) then
gfa=f-32-aa
endif
read (10,*) EE(f)
if (EE(f).lt.d(f)) then
 if (gfa.eq.1) then
 WRITE (8,*)' excavate topsoil'
 endif
 if (gfa.eq.2) then
 WRITE (8,*)'excavate to reduce level'
 endif
 if (gfa.eq.3 .or. gfa.eq.4 .or. gfa.eq.5) then
 WRITE (8,*)'excavate/compact foundations'
 endif
 if (gfa.eq.6) then
 WRITE (8,*)' blinding concrete'
 endif
 if (gfa.eq.7) then
 WRITE (8,*)'formwork for foundations'
 endif
 if (gfa.eq.8) then
 WRITE (8,*)'reinforcement for foundations'
 endif
 if (gfa.eq.9) then
 WRITE (8,*)'concrete for foundations'
 endif
 if (gfa.eq.10) then
 WRITE (8,*)'roof asphalt'
 endif
 if (gfa.eq.11) then
 WRITE (8,*)'internal brickwork'
 endif
 if (gfa.eq.12) then
 WRITE (8,*)'internal blockwork'
 endif
 if (gfa.eq.13) then
 WRITE (8,*)'external brickwork'
 endif
 if (gfa.eq.14) then
 WRITE (8,*)'external blockwork'
 endif
 if (gfa.eq.15) then
 WRITE (8,*)'internal finishes'
 endif
 if (gfa.eq.16) then
 WRITE (8,*)'wall finishes'
 endif
 if (gfa.eq.17) then
 WRITE (8,*)'floor finishes'
 endif
 if (gfa.eq.18) then
 WRITE (8,*)'ceiling finishes'
 endif
endif
A 15-63
WRITE (8,*) 'external finishes'
endif
if (gfa.eq.20) then
WRITE (8,*) 'lift services'
endif
if (gfa.eq.21) then
WRITE (8,*) 'mechanical services'
endif
if (gfa.eq.22) then
WRITE (8,*) 'electrical services'
endif
if (gfa.eq.23) then
WRITE (8,*) 'formwork for ground floor slab/beam'
endif
if (gfa.eq.24) then
WRITE (8,*) 'reinforcement for ground floor slab/beam'
endif
if (gfa.eq.25) then
WRITE (8,*) 'concrete for ground floor slab/beam'
endif
if (gfa.eq.26) then
WRITE (8,*) 'gr-1st/ formwork for columns/walls'
endif
if (gfa.eq.27) then
WRITE (8,*) 'gr-1 / reinforcement for columns/walls'
endif
if (gfa.eq.28) then
WRITE (8,*) 'gr-1 / reinforcement for columns/walls'
endif
if (gfa.eq.29) then
WRITE (8,*) 'gr-1 / formwork for staircases'
endif
if (gfa.eq.30) then
WRITE (8,*) 'gr-1 / reinforcement for staircases'
endif
if (gfa.eq.31) then
WRITE (8,*) 'gr-1 / concrete for staircases'
endif
if (gfa.gt.31 .and. gfa.lt.(26+6*nofloor)) then
do 8500 j= 1,(nofloor-1)
tut=tut+l
if (gfa.eq.(32+6*(j-1))) then
WRITE (8,*) tut, '/ formwork for slab/beams'
elseif (gfa.eq. (33+6* (j-1))) then
WRITE (8,*) tut,'/ reinforcement for slab/beams'
elseif (gfa.eq. (34+6*(j-1))) then
WRITE (8,*) tut,'/ concrete for slab/beams'
elseif (gfa.eq.(35+6*(j-1))) then
WRITE (8,*) tut,-',tut+1, '/ formwork for columns/walls'
elseif (gfa.eq.(36+6*(j-1))) then
WRITE (8,*) tut,'-',tut+1, '/ reinforcement for columns/walls'
elseif (gfa.eq.(37+6*(j-1))) then
A 15-64
WRITE (8,*), tut,'-',tut+1,'/ reinforcement for columns/walls'
endif

8500 continue
endif
if (gfa.eq.(26+6*nofloor)) then
WRITE (8,*), 'concrete for roof slab/beams'
endif
if (gfa.gt.(26+6*nofloor)) then
 do 86000 k=NN-3*(nofloor-2),NN,3
 lm=lm+l
 if (gfa.eq.k) then
 WRITE (8,*), lm,'-',lm+l,'/ formwork for staircases'
 endif
 if (gfa.eq.(k+1)) then
 WRITE (8,*), lm,'-',lm+l,'/ reinforcement for staircases'
 endif
 if (gfa.eq.(k+2)) then
 WRITE (8,*), lm,'-',lm+l,'/ concrete for staircases'
 endif
86000 continue
endif
83000 continue
endif
endif
close (10)
open (10,file='X2.dat',status='old')
do 8700 i=1,nn
 write (10,*) d(i),ee(i)
8700 continue
close (10)
81 format (300f7.2/)
if (old_total .lt. new_total) then
 WRITE (8,*), old_total,'-',d(1)+1,'is the optimum'
open (10,file='X.dat',status='old',form='formatted')
do 81000 i=33+aa,71+aa
 write (10,81) d(i)
81000 continue
close (10)
open (11,file='projco.dat',status='old')
write(11,*), new_total
write(11,*), cost_increase
close (11)
opt_dat=1
endif
if (d(1).lt. prm .or. d(1).gt.prm) then
 goto 3
endif
open (10,file='XI.dat',status='old',form='formatted')
do 81002 i=33+aa,71+aa
 write (10,81) d(i)
81002 continue
close (10)
goto 3

21 do 211 jj=1,n
 a(1,jj)=0.
 do 212 i=2,ml
 k=nxi(i)
 a(1,jj)=a(1,jj)+icj(k)*a(i,jj)
 212 continue
 a(1,jj)=a(1,jj)-icj(jj)
 211 continue

 b(1)=0
 do 214 i=2,ml
 k=nxi(i)
 b(1)=b(1)+icj(k)*b(i)
 214 continue
 zcm=a(1,1)
 jm=1

 do 109 jj=2,n
 if (kod .eq. 1) THEN
 goto 106
 ENDIF

 if (((a(1,jj)-zcm) .lt. 0) THEN
 goto 107
 else
 goto 109
 endif

 106 if (((a(1,jj)-zcm) .le. 0) THEN
 goto 109
 else
 goto 107
 endif

 107 zcm=a(1,jj)
 jm=jj
 109 continue
 ck=kod*zcm

 if (CK .ge. tol) THEN
 goto 131
 ENDIF
 do 124 i=2,ml
 k=nxi(i)
 if ((icj(k) .gt. cv) .or. (icj(k) .lt. cv)) THEN
 goto 124
 ENDIF
 if (b(i) .le. tol) THEN
 goto 124
 ENDIF
 open (2,file='trial.dat',status='old')
 write (2,*) b(i)
 close (2)
write(8,*)'no feasible solution',k,b(i),i
WRITE (8,*)'This project can not be accelerated more.'
write (8,*)'
close (8)
124 continue
npr=2
goto 4444
131 xm=1000000000000000000.0
im=0
do 139 i=2,ml
if(a(i,jm) .le. 0) then
goto 139
ENDIF
xx=b(i)/a(i,jm)
if ((xx-xm) .ge. 0) then
goto 139
ENDIF
xm=xx
im=i
139 continue
if (im .gt.0) then
goto 151
ENDIF
write(8,*)'unbounded solution',jm
close (8)
151 xx=a(im,jm)
b(im)=b(im)/xx
iter=iter+1

do 152 jj=1,n
a(im,jj)=a(im,jj)/xx
152 continue

do 161 i=1, ml
if ((i-im) .eq. 0) then
goto 161
ENDIF
xx=a(i,jm)
b(i)=b(i)-xx*b(im)

do 154 jj=1,n
a(i,jj) =a(i,jj)-xx*a(im,jj)
154 continue
161 continue

nxi(im)=jm
if(npr .eq. 1) then
goto 4444
ENDIF
goto 21

A 15-67
3 open (11, file='projco.dat', status='old')
 write(11,*) new_total
 write(11,*) cost_increase
 close (11)
 if (d(1).le.prm .or. d(1).gt.prm) then
 new_b = 1
 if (new_b.eq.1) then
 open (7, file='new.dat', status='old')
 write (7,*) new_b
 write (7,*) d(1)-1
 close (7)
 endif
 endif
 write (8,*) '
 write (8,*) '
 close (8)

7777 end