On the Influence of Gamma-Irradiation Sterilisation and Ageing on the Fracture Properties of Ultra High Molecular Weight Polyethylene

  • Raphaël Stéphane Pascaud

    Student thesis: Doctoral Thesis

    Abstract

    Pitting and delamination wear of ultra high molecular weight polyethylene (UHMW-PE) tibial plateaux for total joint replacements have habitually been attributed to a fatigue crack growth mechanism associated with a combination of high sub-surface cyclic shear stresses and degradation of the chemistry and structure of UHMW-PE caused by the gamma-irradiation sterilisation standard procedure. However, the exact mechanisms by which cracks initiate and grow in UHMWPE are not known and the relationships between these mechanisms and pitting and delamination are only assumptions based on qualitative observations.

    A fracture mechanics approach based on the J-integral concept of plane strain crack initiation toughness was therefore applied in order to firstly obtain the fracture toughness and crack growth stability of UHMW-PE and secondly to determine the mechanisms by which pitting and delamination occur in vivo. It was necessary to modify the existing standard ASTM E813-89 for the treatment of experimental J data in order to accommodate for the large crack tip plasticity and pronounced ductile tearing. This modified method was then applied to a detailed investigation of the influence of sterilisation and ageing on the chemical, physical and mechanical properties of UHMW-PE. Simulated shelf and in vivo environments enabling a rapid ageing of UHMW-PE corresponding to 10 years of natural ageing were developed. Sterilisation was either conducted by gamma-irradiation in air or nitrogen, or by gas plasma.

    In virgin UHMW-PE, cracks propagated by a succession of plastic deformation and craze nucleation over thin layers of material, yielding a very high value of J (90 kJ/m 2 ) at 37 : C. Gammairradiation in air followed by 10 years ageing resulted in a highly brittle material with a crack initiation fracture toughness reduced by 78% and a mechanical behaviour approaching that of a linear elastic material i.e. creation of a "cup-and-cone" in tension and formation of 45" shear lips in threepoint bending. On the other hand, gas plasma sterilised UHMW-PE could not be differentiated from unsterile UHMW-PE in either its physical nor mechanical properties.

    Qualitative correlations existed between the presence and location of highly oxidised regions and the crack initiation fracture toughness of the material. Quantitatively, the J-initiation toughness exhibited a hyperbolic decrease with increasing density and oxidation index while the tensile secant modulus linearly increased with density. From these empirical relationships, a model was created which described the variation of the fracture toughness with depth within a UHMW-PE sample. This model indicated that the zones of high density, oxidation and crystallinity correspond to the areas of maximum shear stress and minimum fracture toughness and that the propensity of UHMW-PE to suffer pitting, delamination and high wear rates through a fracture mechanism is significantly increased by extensive oxidative degradation.
    Date of AwardDec 1996
    Original languageEnglish

    Cite this

    '