Subaqueous basaltic magmatic explosions trigger phreatomagmatism: A case study from Askja, Iceland

Alison H. Graettinger*, Ian Skilling, Dave McGarvie, Ármann Höskuldsson

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    13 Citations (Scopus)


    Sequences of basaltic pillow lavas that transition upward with systematic gradation from pillow fragment breccias to fluidal bomb-bearing breccias to bomb-bearing lapilli tuffs are common at Askja volcano, Iceland. Based on the detailed textural investigation of three of these sequences, we argue that they record temporally continuous transitions from effusive to explosive products that were erupted from, and deposited at or near a single subaqueous vent. The recognition of such sequences is important as they provide evidence for controls on the onset of explosive activity in subaqueous environments. Such investigations are complicated by the interplay of magmatic gas expansion, and phreatomagmatic and mechanical granulation fragmentation mechanisms in the subaqueous eruptive environment.All of the sequences studied at Askja have textural, componentry and sedimentological characteristics suggestive of a close genetic and spatial relationship between the pillow lavas and all of the overlying glassy clastic deposits. The identification of magma fragmentation signatures in pyroclasts was accomplished through detailed textural studies of pyroclasts within the full range of grain sizes of a given deposit i.e. bomb/blocks, lapilli and fine ash. These textural characteristics were compared and evaluated as discriminators of fragmentation in pyroclastic deposits. The presence of angular vitric clasts within the breccia and lapilli tuff displaying fragile glassy projections indicates little or no post-depositional textural modification. A shift in vesicle and clast textures between the pillow lavas and the large concentration of fluidal bombs in the breccia indicates that the phreatomagmatic explosions were initially triggered by magmatic vesiculation. The initial magmatic gas expansion may have been triggered by depressurization caused by the drainage of the ice-confined lake surrounding Askja. The fuel coolant interactions (FCIs) of the more efficient phreatomagmatic explosions were enabled by the increase in the surface area to volume ratio of the fluidal bombs in the water, producing a premix of magma and water. The onset and increasing influence of phreatomagmatic fragmentation is preserved in the presence of very fine blocky ash particles and diminished presence of larger particles such as fluidal bombs. The textural, sedimentological and environmental characteristics of these deposits suggest that phreatomagmatic explosions can be triggered by initial magmatic gas expansion, but that it is likely one of many mechanisms for triggering such explosions.

    Original languageEnglish
    Pages (from-to)17-35
    Number of pages19
    JournalJournal of Volcanology and Geothermal Research
    Publication statusPublished - 15 Aug 2013


    • Basalt
    • Magma fragmentation
    • Phreatomagmatic explosions
    • Subaqueous eruption


    Dive into the research topics of 'Subaqueous basaltic magmatic explosions trigger phreatomagmatism: A case study from Askja, Iceland'. Together they form a unique fingerprint.

    Cite this