TY - JOUR
T1 - Solvent effect and reactivity trend in the aerobic oxidation of 1,3-propanediols over gold supported on titania
T2 - Nmr diffusion and relaxation studies
AU - D'Agostino, Carmine
AU - Kotionova, Tatyana
AU - Mitchell, Jonathan
AU - Miedziak, Peter J.
AU - Taylor, Stuart H.
AU - Hutchings, Graham J.
AU - Gladden, Lynn F.
AU - Mantle, Mick D.
AU - Knight, David
PY - 2013/8/26
Y1 - 2013/8/26
N2 - In recent work, it was reported that changes in solvent composition, precisely the addition of water, significantly inhibits the catalytic activity of Au/TiO2 catalyst in the aerobic oxidation of 1,4-butanediol in methanol due to changes in diffusion and adsorption properties of the reactant. In order to understand whether the inhibition mechanism of water on diol oxidation in methanol is generally valid, the solvent effect on the aerobic catalytic oxidation of 1,3-propanediol and its two methyl-substituted homologues, 2-methyl-1,3-propanediol and 2,2-dimethyl-1,3-propanediol, over a Au/TiO2 catalyst has been studied here using conventional catalytic reaction monitoring in combination with pulsed-field gradient nuclear magnetic resonance (PFG-NMR) diffusion and NMR relaxation time measurements. Diol conversion is significantly lower when water is present in the initial diol/methanol mixture. A reactivity trend within the group of diols was also observed. Combined NMR diffusion and relaxation time measurements suggest that molecular diffusion and, in particular, the relative strength of diol adsorption, are important factors in determining the conversion. These results highlight NMR diffusion and relaxation techniques as novel, non-invasive characterisation tools for catalytic materials, which complement conventional reaction data. In solvent company: The solvent effect on the aerobic catalytic oxidation of 1,3-propanediol and its two methyl-substituted homologues, 2-methyl-1,3-propanediol and 2,2-dimethyl-1,3-propanediol, over a Au/TiO 2 catalyst has been studied. The results show that diol conversion is significantly lower when water is present in the initial diol/methanol mixture. A reactivity trend within the group of diols was also observed.
AB - In recent work, it was reported that changes in solvent composition, precisely the addition of water, significantly inhibits the catalytic activity of Au/TiO2 catalyst in the aerobic oxidation of 1,4-butanediol in methanol due to changes in diffusion and adsorption properties of the reactant. In order to understand whether the inhibition mechanism of water on diol oxidation in methanol is generally valid, the solvent effect on the aerobic catalytic oxidation of 1,3-propanediol and its two methyl-substituted homologues, 2-methyl-1,3-propanediol and 2,2-dimethyl-1,3-propanediol, over a Au/TiO2 catalyst has been studied here using conventional catalytic reaction monitoring in combination with pulsed-field gradient nuclear magnetic resonance (PFG-NMR) diffusion and NMR relaxation time measurements. Diol conversion is significantly lower when water is present in the initial diol/methanol mixture. A reactivity trend within the group of diols was also observed. Combined NMR diffusion and relaxation time measurements suggest that molecular diffusion and, in particular, the relative strength of diol adsorption, are important factors in determining the conversion. These results highlight NMR diffusion and relaxation techniques as novel, non-invasive characterisation tools for catalytic materials, which complement conventional reaction data. In solvent company: The solvent effect on the aerobic catalytic oxidation of 1,3-propanediol and its two methyl-substituted homologues, 2-methyl-1,3-propanediol and 2,2-dimethyl-1,3-propanediol, over a Au/TiO 2 catalyst has been studied. The results show that diol conversion is significantly lower when water is present in the initial diol/methanol mixture. A reactivity trend within the group of diols was also observed.
KW - diffusion
KW - gold catalysis
KW - heterogeneous catalysts
KW - NMR spectroscopy
KW - solvent effects
U2 - 10.1002/chem.201300502
DO - 10.1002/chem.201300502
M3 - Article
AN - SCOPUS:84882847635
SN - 0947-6539
VL - 19
SP - 11725
EP - 11732
JO - Chemistry - A European Journal
JF - Chemistry - A European Journal
IS - 35
ER -