Abstract
The synthesis and characterization of the first platinum group metal complexes of the recently reported ligand [H2B(mp)2]− (where mp = 2-mercaptopyridyl) are presented herein. Addition of 2 equiv of Na[H2B(mp)2] to [MCl(COD)]2 (where M = Rh, Ir; COD = 1,5-cyclooctadiene) leads to the hydride migration products [Rh{κ3-SSB-BH(mp)2}(η3-C8H13)] and [Ir(H){κ3-SSB-BH(mp)2}(η4-C8H12)], respectively. Structural characterization of the rhodium complex reveals a notably short rhodium–boron distance of 2.054(2) Å. The reactivity observed for the rhodium complex is different from that of all known scorpionate ligands, suggesting a higher propensity for hydride migration within the 2-mercaptopyridine-based ligands. The complex [Ir(Cl){κ3-SSB-BH(mp)2}(η4-C8H12)], which is formed via hydride/halide exchange in chloroform, is also structurally characterized. The new complexes provide rare examples of metallaboratrane complexes where one hydrogen substituent remains at the boron center.
Original language | English |
---|---|
Pages (from-to) | 5844-5850 |
Journal | Organometallics |
Volume | 30 |
Issue number | 21 |
DOIs | |
Publication status | Published - 19 Oct 2011 |