TY - JOUR
T1 - Optimal spectrum access and power control of secondary users in cognitive radio networks
AU - Yang, Yang
AU - Dai, Linglong
AU - Li, Jianjun
AU - Mumtaz, Shahid
AU - Rodriguez, Jonathan
N1 - Publisher Copyright:
© 2017, The Author(s).
Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2017/12/1
Y1 - 2017/12/1
N2 - In future 5G communication system, radio resources can be effectively reused by cognitive radio networks (CRNs), where a lot of secondary users (SUs) are able to access the spectrum of primary users (PUs). In this paper, we analyze the optimal spectrum access and power control of SUs on multiple bands with the target of maximizing the average sum rate (ASR) of SUs. Specifically, based on the stochastic geometry, the random distributions of PUs and SUs are modeled by Poisson point processes (PPPs), based on which we derive out the closed-form outage probabilities and obtain the ASR of SUs. Then, we formulate the maximization problem of ASR on multiple bands under the constraints of outage probabilities. With the help of convex optimization, the optimal density of SUs is obtained in closed-form when the power of SUs is fixed. The convexity of ASR is also verified, and we evaluate the optimal power of SUs when the density of SUs is fixed. Based on these two obtained results, a spectrum access and power control algorithm is further proposed to maximize the ASR of SUs on multiple bands. Simulation results demonstrate that the proposed algorithm can achieve a higher maximum ASR of SUs over the average power allocation algorithm, and the density and power boundary of SUs are constrained by PUs as well as the interference in the networks.
AB - In future 5G communication system, radio resources can be effectively reused by cognitive radio networks (CRNs), where a lot of secondary users (SUs) are able to access the spectrum of primary users (PUs). In this paper, we analyze the optimal spectrum access and power control of SUs on multiple bands with the target of maximizing the average sum rate (ASR) of SUs. Specifically, based on the stochastic geometry, the random distributions of PUs and SUs are modeled by Poisson point processes (PPPs), based on which we derive out the closed-form outage probabilities and obtain the ASR of SUs. Then, we formulate the maximization problem of ASR on multiple bands under the constraints of outage probabilities. With the help of convex optimization, the optimal density of SUs is obtained in closed-form when the power of SUs is fixed. The convexity of ASR is also verified, and we evaluate the optimal power of SUs when the density of SUs is fixed. Based on these two obtained results, a spectrum access and power control algorithm is further proposed to maximize the ASR of SUs on multiple bands. Simulation results demonstrate that the proposed algorithm can achieve a higher maximum ASR of SUs over the average power allocation algorithm, and the density and power boundary of SUs are constrained by PUs as well as the interference in the networks.
KW - Cognitive radio networks
KW - Convex optimization
KW - Poisson point process
KW - Power control
KW - Spectrum access
U2 - 10.1186/s13638-017-0876-5
DO - 10.1186/s13638-017-0876-5
M3 - Article
AN - SCOPUS:85020018917
SN - 1687-1472
VL - 2017
JO - EURASIP Journal on Wireless Communications and Networking
JF - EURASIP Journal on Wireless Communications and Networking
IS - 1
M1 - 98
ER -