Abstract
In this note, we consider the problems of stochastic stability and sliding-mode control for a class of linear continuous-time systems with stochastic jumps, in which the jumping parameters are modeled as a continuous-time, discrete-state homogeneous Markov process with right continuous trajectories taking values in a finite set. By using Linear matrix inequalities (LMIs) approach, sufficient conditions are proposed to guarantee the stochastic stability of the underlying system. Then, a reaching motion controller is designed such that the resulting closed-loop system can be driven onto the desired sliding surface in a limited time. It has been shown that the sliding mode control problem for the Markovian jump systems is solvable if a set of coupled LMIs have solutions. A numerical example is given to show the potential of the proposed techniques.
Original language | English |
---|---|
Pages (from-to) | 97 - 103 |
Number of pages | 6 |
Journal | IEEE Transactions on Automatic Control |
Volume | 51 |
Issue number | 1 |
DOIs | |
Publication status | Published - 16 Jan 2006 |
Keywords
- linear matrix inequality (lmi)
- markovian jump parameter
- sliding-mode control
- stochastic stability