On a conjecture of Degos

Nick Gill

Research output: Contribution to journalArticlepeer-review

74 Downloads (Pure)

Abstract

In this note we use a result of Kantor to prove a conjecture of Degos. Specifically we prove the following: let $\mathbb{F}$ be a finite field of order $q$ and let $f, g\in\mathbb{F}[X]$ be distinct polynomials of degree $n$ such that $f$ is primitive, and the constant term of $g$ is non-zero. Then $ =\mathrm{GL}_n(q)$.
Original languageEnglish
Pages (from-to)To appear
Number of pages6
JournalCahiers de Topologie et Geometrie Differentielle Categoriques
VolumeTo appear
Publication statusAccepted/In press - 11 Feb 2015

Keywords

  • math.GR
  • 20H30

Fingerprint

Dive into the research topics of 'On a conjecture of Degos'. Together they form a unique fingerprint.

Cite this