Abstract
In this note we use a result of Kantor to prove a conjecture of Degos. Specifically we prove the following: let $\mathbb{F}$ be a finite field of order $q$ and let $f, g\in\mathbb{F}[X]$ be distinct polynomials of degree $n$ such that $f$ is primitive, and the constant term of $g$ is non-zero. Then $ =\mathrm{GL}_n(q)$.
Original language | English |
---|---|
Pages (from-to) | To appear |
Number of pages | 6 |
Journal | Cahiers de Topologie et Geometrie Differentielle Categoriques |
Volume | To appear |
Publication status | Accepted/In press - 11 Feb 2015 |
Keywords
- math.GR
- 20H30