Abstract
Molecular switches are of interest for the construction of molecular-scale memory devices. Switches based on redox-triggered helicenes can achieve intense chiroptical read-out values but most systems only display a small potential difference between the “ON” and the “OFF” switch states (redox hysteresis). Although a larger hysteresis could be achieved by coupling the electron transfer to a fast follow-on reaction, this approach has been limited to the intramolecular ring-opening of helicene-like systems to axially chiral biaryls. Here, we present the first intermolecular follow-on reaction: an azoniahelicene system that dimerises upon reduction, leading to intense, reversible chiroptical switching with a >500 mV hysteresis and a >300 mV “read-only” potential range. The reported helicene dimerization is supported by detailed electrochemical investigations and the comparison of experimental and calculated electronic circular dichroism (ECD) spectra.
Original language | English |
---|---|
Article number | c7cc04903j |
Pages (from-to) | 9059-9062 |
Number of pages | 4 |
Journal | Chemical Communications |
Volume | 53 |
Issue number | 65 |
DOIs | |
Publication status | Published - 17 Jul 2017 |