TY - JOUR
T1 - Identifying conserved polychaete molecular markers of metal exposure: Comparative analyses using the Alitta virens (Annelida, Lophotrochozoa) transcriptome.
AU - Etxabe, Amaia Green
AU - Pini, Jennifer M.
AU - Short, Stephen
AU - Cunha, Luis
AU - Kille, Peter
AU - Watson, Gordon J.
N1 - Funding Information:
This work was supported by European RDF ( Interreg ) grants IVA 3C and CHRONEXPO.
Publisher Copyright:
© 2020 Elsevier Inc.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2021/2/1
Y1 - 2021/2/1
N2 - Polychaetes are vital for evaluating the effects of toxic metals in marine systems, and sensitive molecular biomarkers should be integral to monitoring efforts. However, the few polychaete markers that exist are inconsistent, even within the same species, failing to identify gene expression changes in metal-exposed animals incurring clear metabolic costs. Comparing previously characterised polychaete metal-responsive genes with those of another carefully selected species could identify biomarkers applicable across polychaetes. The ragworm Alitta virens (Sars, 1835) is particularly suited for such comparisons due to its dominance of fully saline coastal areas, widespread distribution, large biomass, and its phylogenetic position relative to other polychaete ‘omic’ resources. A transcriptome atlas for A. virens was generated and an RNASeq-qPCR screening approach was used to characterise the response to chronic exposures of environmentally relevant concentrations of copper and zinc in controlled mesocosms. Genes presenting dramatic expression changes in A. virens were compared with known metal-responsive genes in other polychaetes to identify new possible biomarkers and assess those currently used. This revealed some current markers should probably be abandoned (e.g. Atox1), while others, such as GST-Omega, should be used with caution, as different polychaete species appear to upregulate distinct GST-Omega orthologues. In addition, the comparisons give some indication of genes that are induced by metal exposure across phylogenetically divergent polychaetes, including a suite of haemoglobin subunits and linker chains that could play conserved roles in metal-stress response. Although such newly identified markers need further characterisation, they offer alternatives to current markers that are plainly insufficient.
AB - Polychaetes are vital for evaluating the effects of toxic metals in marine systems, and sensitive molecular biomarkers should be integral to monitoring efforts. However, the few polychaete markers that exist are inconsistent, even within the same species, failing to identify gene expression changes in metal-exposed animals incurring clear metabolic costs. Comparing previously characterised polychaete metal-responsive genes with those of another carefully selected species could identify biomarkers applicable across polychaetes. The ragworm Alitta virens (Sars, 1835) is particularly suited for such comparisons due to its dominance of fully saline coastal areas, widespread distribution, large biomass, and its phylogenetic position relative to other polychaete ‘omic’ resources. A transcriptome atlas for A. virens was generated and an RNASeq-qPCR screening approach was used to characterise the response to chronic exposures of environmentally relevant concentrations of copper and zinc in controlled mesocosms. Genes presenting dramatic expression changes in A. virens were compared with known metal-responsive genes in other polychaetes to identify new possible biomarkers and assess those currently used. This revealed some current markers should probably be abandoned (e.g. Atox1), while others, such as GST-Omega, should be used with caution, as different polychaete species appear to upregulate distinct GST-Omega orthologues. In addition, the comparisons give some indication of genes that are induced by metal exposure across phylogenetically divergent polychaetes, including a suite of haemoglobin subunits and linker chains that could play conserved roles in metal-stress response. Although such newly identified markers need further characterisation, they offer alternatives to current markers that are plainly insufficient.
KW - Benthic
KW - Haemoglobin
KW - Heavy metal
KW - Pollution
KW - Polychaete
KW - Ragworm
U2 - 10.1016/j.cbpc.2020.108913
DO - 10.1016/j.cbpc.2020.108913
M3 - Article
C2 - 33164845
SN - 1532-0456
VL - 240
JO - Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology
JF - Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology
M1 - 108913
ER -