Abstract
Surgery accounts for 7.7% of all deaths globally and the number of procedures is increasing annually. A patient's ‘fitness for surgery’ describes the ability to tolerate a physiological insult, fundamental to risk assessment and care planning. We have evolved as obligate aerobes that rely on oxygen (O2). Systemic O2 consumption can be measured via cardiopulmonary exercise testing (CPET) providing objective metrics of cardiorespiratory fitness (CRF). Impaired CRF is an independent risk factor for mortality and morbidity. The perioperative period is associated with increased O2 demand, which if not met leads to O2 deficit, the magnitude and duration of which dictates organ failure and ultimately death. CRF is by far the greatest modifiable risk factor and optimal exercise interventions are currently under investigation in patient prehabilitation programmes. However, current practice demonstrates potential for up to 60% of patients, who undergo preoperative CPET, to have their fitness incorrectly stratified. To optimise this work we must; improve the detection of CRF and reduce potential for interpretive error that may misinform risk classification and subsequent patient care, better quantify risk by expressing the power of CRF to predict mortality and morbidity compared to traditional cardiovascular risk factors, and improve patient interventions with the capacity to further enhance vascular adaptation. Thus, a better understanding of CRF, used to determine fitness for surgery, will enable both clinicians and exercise physiologists to further refine patient care and management to improve survival.
Original language | English |
---|---|
Article number | EP090156 |
Pages (from-to) | 787-799 |
Number of pages | 13 |
Journal | Experimental Physiology |
Volume | 107 |
Issue number | 8 |
Early online date | 17 May 2022 |
DOIs | |
Publication status | Published - 17 May 2022 |
Keywords
- Cardiorespiratory fitness
- mortality
- oxygen transport
- physical activity
- surgery