Enhanced visible-light-driven photocatalytic H2 production and Cr(vi) reduction of a ZnIn2S4/MoS2 heterojunction synthesized by the biomolecule-assisted microwave heating method

Watcharapong Pudkon, Hasliza Bahruji, Peter J. Miedziak, Thomas E. Davies, David J. Morgan, Samuel Pattisson, Sulawan Kaowphong*, Graham J. Hutchings

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    Abstract

    In this work, the biomolecule-assisted microwave heating synthesis of ZnIn2S4, along with the ZnIn2S4/MoS2 composites and their photocatalytic applications, were studied. Well-defined flower-like ZnIn2S4 microspheres synthesized at microwave heating time of 1 h provided the highest surface area and total pore volume, which offered the highest H2 production rate (111.6 μmol h-1 g-1). Different amounts of MoS2 were loaded into the ZnIn2S4 microspheres to form ZnIn2S4/MoS2 composites aiming to improve the H2 production rate. Among the fabricated ZnIn2S4/MoS2 composites, the ZnIn2S4/MoS2-40% wt composite exhibited the highest H2 production rate (200.1 μmol h-1 g-1) under UV-visible light irradiation. In addition, for the first time, this composite was applied for the photoreduction reaction of Cr(vi) ion under visible light irradiation. It provided higher photoreduction efficiency than the single components, where the efficiency was improved in the acidic solutions over the levels recorded in the basic solution. The charge transfer pathway and photocatalytic mechanisms of the ZnIn2S4/MoS2-40% wt photocatalyst have been proposed based on the results obtained from UV-visible diffuse reflectance spectroscopy, photoluminescence spectroscopy, electrochemical impedance spectroscopy, Mott-Schottky measurements and the silver photo-deposition experiment.

    Original languageEnglish
    Pages (from-to)2838-2854
    Number of pages17
    JournalCatalysis Science and Technology
    Volume10
    Issue number9
    Early online date7 Apr 2020
    DOIs
    Publication statusPublished - 7 May 2020

    Fingerprint

    Dive into the research topics of 'Enhanced visible-light-driven photocatalytic H2 production and Cr(vi) reduction of a ZnIn2S4/MoS2 heterojunction synthesized by the biomolecule-assisted microwave heating method'. Together they form a unique fingerprint.

    Cite this