Effects of waste plastics as partial fine-aggregate replacement for reinforced low-carbon concrete pavements

Kiran Tota-Maharaj*, Blessing Adeleke, Ghassan Nounu

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    2 Downloads (Pure)

    Abstract

    Using waste plastics as a partial natural aggregate replacement and monitoring strength and workability reduction in pavement structures is vital to net-carbon zero. This study explores the utilisation of waste plastic as a fine aggregate replacement in medium-strength reinforced concrete pavements, for improving plastic aggregate performance and the intrinsic reasoning for observed strength performance. Various weight fractions of fines were substituted by the same weight of plastic aggregates ranging from 5–15% according to the appropriate standards (Eurocodes and British Standards). The physical and mechanical properties of the composites were analysed. The results indicated that the use of polymeric materials as a partial replacement for fines contributed to a decrease in workability, compressive strength and push-out bond between steel reinforcement and concrete. Despite these trends, 5% replacement of fine aggregates with plastic waste surpassed all the feasibility criteria. Furthermore, using 10% of plastic replacement by weight was deemed feasible in non-structural applications such as roads, pavements, and facades. The outputs have demonstrated environmental engineering concepts in tackling plastic waste, providing an alternative to conventional aggregate. Environmental benefits can arise due to the removal of potentially hazardous plastics from entering ecosystems as well as minimising dredging of global sand reserves.
    Original languageEnglish
    Article number2108156
    Pages (from-to)194–209
    Number of pages15
    JournalInternational Journal of Sustainable Engineering
    Volume15
    Issue number1
    Early online date23 Aug 2022
    DOIs
    Publication statusE-pub ahead of print - 23 Aug 2022

    Keywords

    • Polymeric materials
    • waste plastics
    • fine aggregate
    • reinforced concrete pavements (RCP)
    • sustainable infrastructure
    • low carbon cementitious materials

    Fingerprint

    Dive into the research topics of 'Effects of waste plastics as partial fine-aggregate replacement for reinforced low-carbon concrete pavements'. Together they form a unique fingerprint.

    Cite this