Abstract
Intelligent Transportation Systems (ITS), one aspect of the Smart City paradigm, aim to improve the efficiency, convenience, and safety of travelers. The integration of (vehicular) communication technologies allows communication between the on-board communication units (OBUs) of vehicles, roadside units (RSUs), and vulnerable road users (VRUs), and contribute to the efficacy of ITS applications. However, these additional sources of information must be reliable and accurate. Security primitives such as confidentiality, integrity, and authenticity are required, but only achievable when supported with a suitable cryptographic key management scheme. This paper presents the design of a decentralized and efficient key management scheme, abbreviated as the DECENT scheme. This scheme provides secure multi-hop communication in dense and dynamic network environments while functioning in a self-organized manner. Through threshold secret sharing techniques, network nodes act as a distributed trusted third party (TTP) such that a threshold number of nodes can collaborate to execute key management functions. These functions include decentralized node admission and key updating. Novelties include (i) the unique self-healing characteristic, meaning that DECENT is capable of independently recovering from network compromise, and (ii) guidelines for choosing an appropriate security threshold in any deployment scenario which maximizes the level of security while simultaneously guaranteeing that decentralized key management services can be provided.
Original language | English |
---|---|
Article number | 9750056 |
Pages (from-to) | 7586-7598 |
Number of pages | 13 |
Journal | IEEE Transactions on Intelligent Transportation Systems |
Volume | 24 |
Issue number | 7 |
Early online date | 5 Apr 2022 |
DOIs | |
Publication status | Published - Jul 2023 |
Keywords
- Ad hoc networks
- Cryptography
- decentralized systems
- Intelligent transportation systems
- key management
- multi-hop communication
- Security
- security.
- Servers
- Smart cities
- Spread spectrum communication
- Vehicle dynamics