Abstract
We prove Cherlin's conjecture, concerning binary primitive permutation groups, for those groups with socle isomorphic to $\mathrm{PSL}_2(q)$, ${^2\mathrm{B}_2}(q)$, ${^2\mathrm{G}_2}(q)$ or $\mathrm{PSU}_3(q)$. Our method uses the notion of a "strongly non-binary action".
Original language | English |
---|---|
Pages (from-to) | 417-435 |
Journal | Mathematical Proceedings of the Cambridge Philosophical Society |
Volume | 167 |
Issue number | 3 |
Early online date | 5 Jul 2018 |
DOIs | |
Publication status | Published - Nov 2019 |
Keywords
- math.GR
- 20B15, 20D06, 03C13