Abstract
This article demonstrates the design and development of WR-15 transition using an antipodal microstrip dipole antenna at a frequency of 60 GHz for space applications. An inline microstrip line to rectangular waveguide (MS-to-RWG) transition is proposed for the V-band (50–75 GHz) functioning. The RF energy is coupled and launched through an antipodal dipole microstrip antenna. Impedance matching and mode matching between the MS line and dipole are achieved by a quarter wave impedance transformer. This results in the better performance of transitions in terms of insertion loss (IL > −0.50 dB) and return loss (RL < −10 dB) for a 40.76% relative bandwidth from 55.57 GHz to 65.76 GHz. The lowest values of IL and RL at 60 GHz are −0.09 dB and −32.05 dB, respectively. A 50 μm thick double-sided etched InP substrate material is used for microstrip antipodal dipole antenna design. A back-to-back designed transition has IL > −0.70 dB and RL < −10 dB from 54.29 GHz to 64.07 GHz. The inline transition design is simple in structure, easy to fabricate, robust, compact, and economic; occupies less space because the transition size is exactly equal to the WR-15 length; and is prepared using an InP substrate with high permittivity of 12.4 and thickness of 50 μm. Thus, the devices have the lowest insertion loss value and lowest return loss (RL) value, of
Original language | English |
---|---|
Article number | 3860 |
Number of pages | 16 |
Journal | Electronics |
Volume | 11 |
Issue number | 23 |
Early online date | 23 Nov 2022 |
DOIs | |
Publication status | E-pub ahead of print - 23 Nov 2022 |
Keywords
- Article
- electrical equivalent circuit model
- interconnects
- microstrip line
- mm-waves
- V-band
- WR-15 transition