Acute Gravitational Stress Selectively Impairs Dynamic Cerebrovascular Reactivity in the Anterior Circulation Independent of Changes to the Central Respiratory Chemoreflex

Hironori Watanabe, Shotaro Saito, Takuro Washio, Damian Bailey, Shigehiko Ogoh

    Research output: Contribution to journalArticlepeer-review

    2 Downloads (Pure)

    Abstract

    Cerebrovascular reactivity (CVR) to changes in the partial pressure of arterial carbon dioxide (PaCO2) is an important mechanism that maintains CO2 or pH homeostasis in the brain. To what extent this is influenced by gravitational stress and corresponding implications for the regulation of cerebral blood flow (CBF) remain unclear. The present study examined the onset responses of pulmonary ventilation (V̇E) and anterior middle (MCA) and posterior (PCA) cerebral artery mean blood velocity (Vmean) responses to acute hypercapnia (5% CO2) to infer dynamic changes in the central respiratory chemoreflex and cerebrovascular reactivity (CVR), in supine and 50° head-up tilt (HUT) positions. Each onset response was evaluated using a single-exponential regression model consisting of the response time latency [CO2-response delay (t0)] and time constant (τ). Onset response of V̇E and PCA Vmean to changes in CO2 was unchanged during 50° HUT compared with supine (τ: V̇E, p = 0.707; PCA Vmean, p = 0.071 vs. supine) but the MCA Vmean onset response was faster during supine than during 50° HUT (τ: p = 0.003 vs. supine). These data indicate that gravitational stress selectively impaired dynamic CVR in the anterior cerebral circulation, whereas the posterior circulation was preserved, independent of any changes to the central respiratory chemoreflex. Collectively, our findings highlight the regional heterogeneity underlying CBF regulation that may have translational implications for the microgravity (and hypercapnia) associated with deep-space flight notwithstanding terrestrial orthostatic diseases that have been linked to accelerated cognitive decline and neurodegeneration.
    Original languageEnglish
    Article number749255
    Number of pages9
    JournalFrontiers in Physiology
    Volume12
    DOIs
    Publication statusPublished - 6 Jan 2022

    Keywords

    • anterior cerebral blood flow
    • posterior cerebral blood flow
    • respiratory chemoreflex
    • head-up tilt
    • Hypercapnia

    Fingerprint

    Dive into the research topics of 'Acute Gravitational Stress Selectively Impairs Dynamic Cerebrovascular Reactivity in the Anterior Circulation Independent of Changes to the Central Respiratory Chemoreflex'. Together they form a unique fingerprint.

    Cite this