Abstract
Let $G=A_n$, a finite alternating group. We study the commuting graph of $G$ and establish, for all possible values of $n$ barring $13, 14, 17$ and $19$, whether or not the independence number is equal to the clique-covering number.
Original language | Unknown |
---|---|
Pages (from-to) | 135-150 |
Number of pages | 16 |
Journal | Archiv Der Maethematik |
Volume | 107 |
Issue number | 2 |
Early online date | 7 Jul 2016 |
DOIs | |
Publication status | Published - 31 Aug 2016 |
Keywords
- math.GR
- math.CO
- 20B30, 05C25
- finite simple group
- Alternating group
- Commuting graph
- Clique covering number
- independence number