TY - JOUR
T1 - Surface functionalized TiO2 supported Pd catalysts for solvent-free selective oxidation of benzyl alcohol
AU - Weerachawanasak, Patcharaporn
AU - Hutchings, Graham J.
AU - Edwards, Jennifer K.
AU - Kondrat, Simon A.
AU - Miedziak, Peter J.
AU - Prasertham, Piyasan
AU - Panpranot, Joongjai
PY - 2015/7/15
Y1 - 2015/7/15
N2 - Pd catalysts supported on TiO2 functionalized with various amounts of 3-aminopropyltriethoxysilane (APTES) were prepared using a post-synthesis grafting method combined with electroless deposition of Pd. As revealed by the Fourier transformed infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) results, monolayer APTES grafting was obtained using 0.005 mmol APTES on 1.5 g TiO2 support. Excess amounts of APTES resulted in both multilayer and reversed attachment, which NH2 attached to the TiO2 surface rather than giving free NH2 termination. The catalytic activity in the solvent-free selective oxidation of benzyl alcohol was correlated well with the highest amount of Pd deposited as well as the formation of small and uniform Pd nanoclusters with narrow particle size distribution (average diameter 3.4 nm) on the 1%Pd/TiO2-0.005APTES. Increasing of surface basicity via the hydrolysis of amino groups (NH2) is suggested to enhance the dehydrogenation of benzyl alcohol, and as a consequence the selectivity toward benzaldehyde increased for all the APTES-modified TiO2 supported Pd catalysts. In addition, the combination of metallic Pd0 and PdOx (Pd2+/Pd4+) species gave high catalytic activity in the benzyl alcohol oxidation, emphasizing that the reduction of PdOx species by the adsorbed benzyl alcohol is an essential step to form highly active metallic Pd0 sites.
AB - Pd catalysts supported on TiO2 functionalized with various amounts of 3-aminopropyltriethoxysilane (APTES) were prepared using a post-synthesis grafting method combined with electroless deposition of Pd. As revealed by the Fourier transformed infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) results, monolayer APTES grafting was obtained using 0.005 mmol APTES on 1.5 g TiO2 support. Excess amounts of APTES resulted in both multilayer and reversed attachment, which NH2 attached to the TiO2 surface rather than giving free NH2 termination. The catalytic activity in the solvent-free selective oxidation of benzyl alcohol was correlated well with the highest amount of Pd deposited as well as the formation of small and uniform Pd nanoclusters with narrow particle size distribution (average diameter 3.4 nm) on the 1%Pd/TiO2-0.005APTES. Increasing of surface basicity via the hydrolysis of amino groups (NH2) is suggested to enhance the dehydrogenation of benzyl alcohol, and as a consequence the selectivity toward benzaldehyde increased for all the APTES-modified TiO2 supported Pd catalysts. In addition, the combination of metallic Pd0 and PdOx (Pd2+/Pd4+) species gave high catalytic activity in the benzyl alcohol oxidation, emphasizing that the reduction of PdOx species by the adsorbed benzyl alcohol is an essential step to form highly active metallic Pd0 sites.
KW - 3-Aminopropyltriethoxysilane (APTES)
KW - Benzyl alcohol oxidation
KW - Electroless deposition
KW - Pd/TiO<inf>2</inf> catalyst
KW - Surface functionalization
U2 - 10.1016/j.cattod.2014.06.005
DO - 10.1016/j.cattod.2014.06.005
M3 - Article
AN - SCOPUS:84929061523
VL - 250
SP - 218
EP - 225
JO - Catalysis Today
JF - Catalysis Today
SN - 0920-5861
ER -