Strip snap analytics in cold rolling process using machine learning

Zheyuan Chen, Ying Liu, Agustin Valera-Medina, Fiona Robinson

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddCyfraniad i gynhadleddadolygiad gan gymheiriaid

Crynodeb

Strip snap, also known as strip breakage or belt tearing, is an undesirable quality incident which results in yield loss and reduced work speed in the cold rolling process of strip products. Therefore, it is necessary to reveal a functional relationship between certain selected variables and strip snap event for the aim of quality improvement. In this study, the probability of strip snap occurrence was quantified by a selected measured variable. Several machine learning algorithms were adopted to predict this target probability. To validate this approach, a case study was conducted based on real-world data collected from an electrical steel reversing mill. The excessively good performance indicates several variables which are strongly correlated with the target.

Iaith wreiddiolSaesneg
Teitl2019 IEEE 15th International Conference on Automation Science and Engineering, CASE 2019
CyhoeddwrIEEE Computer Society
Tudalennau368-373
Nifer y tudalennau6
ISBN (Electronig)978-1-7281-0355-6, 978-1-7281-0356-3 , 978-1-7281-0357-0
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - Awst 2019
Cyhoeddwyd yn allanolIe
Digwyddiad15th IEEE International Conference on Automation Science and Engineering, CASE 2019 - Vancouver, Canada
Hyd: 22 Awst 201926 Awst 2019

Cyfres gyhoeddiadau

EnwIEEE International Conference on Automation Science and Engineering
Cyfrol2019-August
ISSN (Argraffiad)2161-8070
ISSN (Electronig)2161-8089

Cynhadledd

Cynhadledd15th IEEE International Conference on Automation Science and Engineering, CASE 2019
Gwlad/TiriogaethCanada
DinasVancouver
Cyfnod22/08/1926/08/19

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Strip snap analytics in cold rolling process using machine learning'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn