TY - JOUR
T1 - Selective Electroless Copper Plating of Ink-Jet Printed Textiles Using a Copper-Silver Nanoparticle Catalyst
AU - Azar, Golnaz Taghavi Pourian
AU - Danilova, Sofya
AU - Krishnan, Latha
AU - Fedutik, Yirij
AU - Cobley, Andrew J
PY - 2022/9
Y1 - 2022/9
N2 - The electroless copper plating of textiles, which have been previously printed with a catalyst, is a promising method to selectively metallise them to produce high-reliability e-textiles, sensors and wearable electronics with wide-ranging applications in high-value sectors such as healthcare, sport, and the military. In this study, polyester textiles were ink-jet printed using differing numbers of printing cycles and printing directions with a functionalised copper-silver nanoparticle catalyst, followed by electroless copper plating. The catalyst was characterised using Transmission Electron Microscopy (TEM) and Ultraviolet/Visible (UV/Vis) spectroscopy. The electroless copper coatings were characterised by copper mass gain, visual appearance and electrical resistance in addition to their morphology and the plating coverage of the fibres using Scanning Electron Microscopy (SEM). Stiffness, laundering durability and colour fastness of the textiles were also analysed using a stiffness tester and Launder Ometer, respectively. The results indicated that in order to provide a metallised pattern with the desired conductivity, stiffness and laundering durability for e-textiles, the printing design, printing direction and the number of printing cycles of the catalyst should be carefully optimised considering the textile's structure. Achieving a highly conductive complete copper coating, together with an almost identical and sufficiently low stiffness on both sides of the textile can be considered as useful indicators to judge the suitability of the process.
AB - The electroless copper plating of textiles, which have been previously printed with a catalyst, is a promising method to selectively metallise them to produce high-reliability e-textiles, sensors and wearable electronics with wide-ranging applications in high-value sectors such as healthcare, sport, and the military. In this study, polyester textiles were ink-jet printed using differing numbers of printing cycles and printing directions with a functionalised copper-silver nanoparticle catalyst, followed by electroless copper plating. The catalyst was characterised using Transmission Electron Microscopy (TEM) and Ultraviolet/Visible (UV/Vis) spectroscopy. The electroless copper coatings were characterised by copper mass gain, visual appearance and electrical resistance in addition to their morphology and the plating coverage of the fibres using Scanning Electron Microscopy (SEM). Stiffness, laundering durability and colour fastness of the textiles were also analysed using a stiffness tester and Launder Ometer, respectively. The results indicated that in order to provide a metallised pattern with the desired conductivity, stiffness and laundering durability for e-textiles, the printing design, printing direction and the number of printing cycles of the catalyst should be carefully optimised considering the textile's structure. Achieving a highly conductive complete copper coating, together with an almost identical and sufficiently low stiffness on both sides of the textile can be considered as useful indicators to judge the suitability of the process.
KW - electroless copper plating
KW - selective metallisation
KW - nanoparticle catalyst
KW - e-textiles
KW - ink-jet printing
U2 - 10.3390/polym14173467
DO - 10.3390/polym14173467
M3 - Article
C2 - 36080541
SN - 2073-4360
VL - 14
SP - 3467
JO - Polymers
JF - Polymers
IS - 17
M1 - 3467
ER -