Random Graphs Associated to Some Discrete and Continuous Time Preferential Attachment Models

Angelica Pachon*, Federico Polito, Laura Sacerdote

*Awdur cyfatebol y gwaith hwn

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

2 Dyfyniadau (Scopus)

Crynodeb

We give a common description of Simon, Barabási–Albert, II-PA and Price growth models, by introducing suitable random graph processes with preferential attachment mechanisms. Through the II-PA model, we prove the conditions for which the asymptotic degree distribution of the Barabási–Albert model coincides with the asymptotic in-degree distribution of the Simon model. Furthermore, we show that when the number of vertices in the Simon model (with parameter (Formula presented.)) goes to infinity, a portion of them behave as a Yule model with parameters (Formula presented.) , and through this relation we explain why asymptotic properties of a random vertex in Simon model, coincide with the asymptotic properties of a random genus in Yule model. As a by-product of our analysis, we prove the explicit expression of the in-degree distribution for the II-PA model, given without proof in Newman (Contemp Phys 46:323-351, 2005). References to traditional and recent applications of the these models are also discussed.

Iaith wreiddiolSaesneg
Tudalennau (o-i)1608-1638
Nifer y tudalennau31
CyfnodolynJournal of Statistical Physics
Cyfrol162
Rhif cyhoeddi6
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 1 Maw 2016
Cyhoeddwyd yn allanolIe

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Random Graphs Associated to Some Discrete and Continuous Time Preferential Attachment Models'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn