Proteomic Characterization Using Active Shape And Non-Gaussian Stochastic Texture Models

Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddCyfraniad i gynhadleddadolygiad gan gymheiriaid

Crynodeb

This paper presents a method for the systematically extraction cellular parameters from imaging proteomic datasets in a way suitable for subsequent biological modelling and simulation. This was achieved by capturing the spatial boundaries of cell structures as well as the distribution of its constituents. The model uses the Active Shape Models to parameterize the shape of cellular structures and the Non-Gaussian Texture Model to parameterize spatial distribution of sub-cellular material. Results show the model can extract then generate faithful representations of cellular shapes and textures for a variety of cell types and protein expressions and hence could offer a natural spatial framework for current research on simulating and predicting sub-cellular processes.
Iaith wreiddiolSaesneg
TeitlN/A
Nifer y tudalennau3
StatwsE-gyhoeddi cyn argraffu - 2 Ion 2009
Digwyddiad IEEE International Conference on Image processing ICIP - Location unknown - please update
Hyd: 2 Ion 20092 Ion 2009

Cynhadledd

Cynhadledd IEEE International Conference on Image processing ICIP
Cyfnod2/01/092/01/09

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Proteomic Characterization Using Active Shape And Non-Gaussian Stochastic Texture Models'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn