On the continuous-time limit of the Barabási–Albert random graph

Angelica Pachon, Federico Polito*, Laura Sacerdote

*Awdur cyfatebol y gwaith hwn

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

22 Wedi eu Llwytho i Lawr (Pure)

Crynodeb

We prove that, via an appropriate scaling, the degree of a fixed vertex in the Barabási–Albert model appeared at a large enough time converges in distribution to a Yule process. Using this relation we explain why the limit degree distribution of a vertex chosen uniformly at random (as the number of vertices goes to infinity), coincides with the limit distribution of the number of species in a genus selected uniformly at random in a Yule model (as time goes to infinity). To prove this result we do not assume that the number of vertices increases exponentially over time (linear rates). On the contrary, we retain their natural growth with a constant rate superimposing to the overall graph structure a suitable set of processes that we call the planted model and introducing an ad-hoc sampling procedure.

Iaith wreiddiolSaesneg
Rhif yr erthygl125177
CyfnodolynApplied Mathematics and Computation
Cyfrol378
Dyddiad ar-lein cynnar3 Ebr 2020
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 1 Awst 2020

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'On the continuous-time limit of the Barabási–Albert random graph'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn