Crynodeb
There is a parallelism between growth in arithmetic combinatorics and growth in a geometric context. While, over $\mathbb{R}$ or $\mathbb{C}$, geometric statements on growth often have geometric proofs, what little is known over finite fields rests on arithmetic proofs. We discuss strategies for geometric proofs of growth over finite fields, and show that growth can be defined and proven in an abstract projective plane -- even one with weak axioms.
Iaith wreiddiol | Saesneg |
---|---|
Tudalennau (o-i) | 3593-3602 |
Nifer y tudalennau | 10 |
Cyfnodolyn | Proceedings of the American Mathematical Society |
Cyfrol | 143 |
Rhif cyhoeddi | 8 |
Dynodwyr Gwrthrych Digidol (DOIs) | |
Statws | Cyhoeddwyd - 13 Ebr 2015 |