On growth in an abstract plane

Nick Gill, H. A. Helfgott, Misha Rudnev

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

88 Wedi eu Llwytho i Lawr (Pure)

Crynodeb

There is a parallelism between growth in arithmetic combinatorics and growth in a geometric context. While, over $\mathbb{R}$ or $\mathbb{C}$, geometric statements on growth often have geometric proofs, what little is known over finite fields rests on arithmetic proofs. We discuss strategies for geometric proofs of growth over finite fields, and show that growth can be defined and proven in an abstract projective plane -- even one with weak axioms.
Iaith wreiddiolSaesneg
Tudalennau (o-i)3593-3602
Nifer y tudalennau10
CyfnodolynProceedings of the American Mathematical Society
Cyfrol143
Rhif cyhoeddi8
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 13 Ebr 2015

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'On growth in an abstract plane'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn