Microwave synthesis of ZnIn2S4/WS2 composites for photocatalytic hydrogen production and hexavalent chromium reduction

Watcharapong Pudkon, Sulawan Kaowphong, Samuel Pattisson, Peter J. Miedziak, Hasliza Bahruji, Thomas E. Davies, David J. Morgan, Graham J. Hutchings*

*Awdur cyfatebol y gwaith hwn

    Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

    4 Dyfyniadau (Scopus)

    Crynodeb

    A rapid microwave synthesis route for the fabrication of ZnIn2S4 powder and ZnIn2S4/WS2 composites is presented. Firstly, the effects of different sulfur sources-thioacetamide and l-cysteine-on the physicochemical properties and photocatalytic H2 production of the synthesized ZnIn2S4 were investigated. It was found that well-defined flower-like ZnIn2S4 microspheres obtained from l-cysteine facilitated a relatively higher H2 production rate. Then, different loadings of WS2 were introduced into the well-defined flower-like ZnIn2S4 microspheres aiming to improve its photocatalytic H2 production. Compared to pure ZnIn2S4 and WS2, all ZnIn2S4/WS2 composite photocatalysts exhibited enhanced photocatalytic H2 production in the presence of Na2S/Na2SO3 as sacrificial reagents under UV-visible irradiation, where the ZnIn2S4/WS2-40% wt composite had the highest photocatalytic activity. For this material, 293.3 and 76.6 μmol h-1 g-1 of H2 gas were produced under UV-visible and visible light irradiation, respectively. In addition, the photoreduction activity of hexavalent chromium (Cr(vi)) by ZnIn2S4/WS2-40% wt was also investigated under visible light irradiation and it was observed that 98.5% of Cr(vi) was reduced within 90 min at pH 4.

    Iaith wreiddiolSaesneg
    Tudalennau (o-i)5698-5711
    Nifer y tudalennau14
    CyfnodolynCatalysis Science and Technology
    Cyfrol9
    Rhif cyhoeddi20
    Dynodwyr Gwrthrych Digidol (DOIs)
    StatwsCyhoeddwyd - 4 Medi 2019

    Ôl bys

    Gweld gwybodaeth am bynciau ymchwil 'Microwave synthesis of ZnIn2S4/WS2 composites for photocatalytic hydrogen production and hexavalent chromium reduction'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

    Dyfynnu hyn