Growth in solvable subgroups of GL_r(Z/pZ)

Nick Gill, Harald Andres Helfgott

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

81 Wedi eu Llwytho i Lawr (Pure)

Crynodeb

Let $K=Z/pZ$ and let $A$ be a subset of $\GL_r(K)$ such that $ $ is solvable. We reduce the study of the growth of $A$ under the group operation to the nilpotent setting. Specifically we prove that either $A$ grows rapidly (meaning $|A\cdot A\cdot A|\gg |A|^{1+\delta}$), or else there are groups $U_R$ and $S$, with $S/U_R$ nilpotent such that $A_k\cap S$ is large and $U_R\subseteq A_k$, where $k$ is a bounded integer and $A_k = \{x_1 x_2...b x_k : x_i \in A \cup A^{-1} \cup {1}}$. The implied constants depend only on the rank $r$ of $\GL_r(K)$. When combined with recent work by Pyber and Szab\'o, the main result of this paper implies that it is possible to draw the same conclusions without supposing that $ $ is solvable.
Iaith wreiddiolSaesneg
Tudalennau (o-i)157
Nifer y tudalennau52
CyfnodolynMathematische Annalen
Cyfrol360
Rhif cyhoeddi1-2
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - 26 Maw 2014

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Growth in solvable subgroups of GL_r(Z/pZ)'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn