Crynodeb
Let $K=Z/pZ$ and let $A$ be a subset of $\GL_r(K)$ such that $ $ is solvable. We reduce the study of the growth of $A$ under the group operation to the nilpotent setting. Specifically we prove that either $A$ grows rapidly (meaning $|A\cdot A\cdot A|\gg |A|^{1+\delta}$), or else there are groups $U_R$ and $S$, with $S/U_R$ nilpotent such that $A_k\cap S$ is large and $U_R\subseteq A_k$, where $k$ is a bounded integer and $A_k = \{x_1 x_2...b x_k : x_i \in A \cup A^{-1} \cup {1}}$. The implied constants depend only on the rank $r$ of $\GL_r(K)$. When combined with recent work by Pyber and Szab\'o, the main result of this paper implies that it is possible to draw the same conclusions without supposing that $ $ is solvable.
Iaith wreiddiol | Saesneg |
---|---|
Tudalennau (o-i) | 157 |
Nifer y tudalennau | 52 |
Cyfnodolyn | Mathematische Annalen |
Cyfrol | 360 |
Rhif cyhoeddi | 1-2 |
Dynodwyr Gwrthrych Digidol (DOIs) | |
Statws | Cyhoeddwyd - 26 Maw 2014 |