Finding robust optima wth a diploid genetic algorithm

Shane Lee, Hefin Rowlands

    Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

    1 Dyfyniad (Scopus)

    Crynodeb

    Genetic algorithms are generally used to search for global optima. However, for many engineering /simulation applications a robust solution is desired, which may not correspond to the global optimum of the given problem. This paper describes a genetic algorithm using diploid chromosomes, which favours robust local optima rather than a less robust global optimum in a problem space. Diploid chromosomes are created with two binary haploid chromosomes, which are used to create a schema. The schema then used to measure the fitness of a family of solutions. The results of experiments using a bi-modal fitness function with one local optimum and a fitter less robust global optimum show that the optima in the problem space representing the more robust solution is found almost 100% of the time.

    Iaith wreiddiolSaesneg
    Tudalennau (o-i)73-79
    Nifer y tudalennau7
    CyfnodolynInternational Journal of Simulation: Systems, Science and Technology
    Cyfrol6
    Rhif cyhoeddi9
    StatwsCyhoeddwyd - 1 Awst 2005

    Ôl bys

    Gweld gwybodaeth am bynciau ymchwil 'Finding robust optima wth a diploid genetic algorithm'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

    Dyfynnu hyn