Estimating pose of articulated objects using low-level motion

Ben Daubney, David Gibson, Neill Campbell

    Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddPennodadolygiad gan gymheiriaid


    In this work a method is presented to track and estimate pose of articulated objects using the motion of a sparse set of moving features. This is achieved by using a bottom-up generative approach based on the Pictorial Structures representation [1]. However, unlike previous approaches that rely on appearance, our method is entirely dependent on motion. Initial low-level part detection is based on how a region moves as opposed to its appearance. This work is best described as Pictorial Structures using motion. A standard feature tracker is used to automatically extract a sparse set of features. These features typically contain many tracking errors, however, the presented approach is able to overcome both this and their sparsity. The proposed method is applied to two problems: 2D pose estimation of articulated objects walking side onto the camera and 3D pose estimation of humans walking and jogging at arbitrary orientations to the camera. In each domain quantitative results are reported that improve on state of the art. The motivation of this work is to illustrate the information present in low-level motion that can be exploited for the task of pose estimation. ?? 2011 Elsevier Inc. All rights reserved.
    Iaith wreiddiolSaesneg
    TeitlComputer Vision and Image Understanding
    Nifer y tudalennau17
    Dynodwyr Gwrthrych Digidol (DOIs)
    StatwsCyhoeddwyd - Maw 2012

    Cyfres gyhoeddiadau

    EnwComputer Vision and Image Understanding

    Ôl bys

    Gweld gwybodaeth am bynciau ymchwil 'Estimating pose of articulated objects using low-level motion'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

    Dyfynnu hyn