Estimating 3D human pose from single images using iterative refinement of the prior

Ben Daubney, Xianghua Xie

    Allbwn ymchwil: Pennod mewn Llyfr/Adroddiad/Trafodion CynhadleddPennodadolygiad gan gymheiriaid

    Crynodeb

    This paper proposes a generative method to extract 3D human pose using just a single image. Unlike many existing approaches we assume that accurate foreground background segmentation is not possible and do not use binary silhouettes. A stochastic method is used to search the pose space and the posterior distribution is maximized using Expectation Maximization (EM). It is assumed that some knowledge is known a priori about the position, scale and orientation of the person present and we specifically develop an approach to exploit this. The result is that we can learn a more constrained prior without having to sacrifice its generality to a specific action type. A single prior is learnt using all actions in the Human Eva dataset [9] and we provide quantitative results for images selected across all action categories and subjects, captured from differing viewpoints.
    Iaith wreiddiolSaesneg
    TeitlProceedings - International Conference on Pattern Recognition
    Tudalennau3440-3443
    Nifer y tudalennau4
    Dynodwyr Gwrthrych Digidol (DOIs)
    StatwsCyhoeddwyd - 2010

    Cyfres gyhoeddiadau

    EnwProceedings - International Conference on Pattern Recognition

    Ôl bys

    Gweld gwybodaeth am bynciau ymchwil 'Estimating 3D human pose from single images using iterative refinement of the prior'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

    Dyfynnu hyn