Enhancing Audio Deepfake Detection: A Study of Deep Learning Parameters

Mabrouka Abuhmida, Robert Whittey

Allbwn ymchwil: Cyfraniad at gynhadleddPapuradolygiad gan gymheiriaid

Crynodeb

In this study, we evaluated the effectiveness of various deep learning parameters in detecting audio deepfakes using convolutional neural network (CNN) architectures. Through a series of experiments and comparative analyses, we developed four distinct models, each with different activation functions, optimizers, and learning rates. These models were meticulously trained and evaluated using a comprehensive dataset containing both fake and genuine audio samples. The results indicate that Model 1 achieved an exceptional accuracy of 97.8%, primarily due to the effective use of ReLU activation and the Adam optimizer. Additionally, Model 4 showed significant improvement, attaining a validation ac-curacy of 96% by employing advanced activation functions and the Adagrad optimizer. In contrast, Model 2, which used a sigmoid activation function in its fully connected layer and the RMSprop optimizer, and Model 3, which utilized the hyperbolic tangent activation function along with the stochastic gradient descent optimizer, demonstrated moderate accuracies.
Iaith wreiddiolSaesneg
StatwsWedi’i dderbyn/Yn y wasg - 8 Awst 2024
DigwyddiadInternational Conference on Emerging Technologies in Computing 2024
- University of Essex, Southend Campus, UK., London, Y Deyrnas Unedig
Hyd: 15 Awst 202416 Awst 2024
Rhif y gynhadledd: 7
https://icetic24.theiaer.org/

Cynhadledd

CynhadleddInternational Conference on Emerging Technologies in Computing 2024
Teitl crynoiCETiC 24
Gwlad/TiriogaethY Deyrnas Unedig
DinasLondon
Cyfnod15/08/2416/08/24
Cyfeiriad rhyngrwyd

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Enhancing Audio Deepfake Detection: A Study of Deep Learning Parameters'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn