Automorphic forms for some even unimodular lattices

Neil Dummigan, Dan Fretwell

Allbwn ymchwil: Cyfraniad at gyfnodolynErthygladolygiad gan gymheiriaid

Crynodeb

We look at genera of even unimodular lattices of rank 12 over the ring of integers of Q(5) and of rank 8 over the ring of integers of Q(3), using Kneser neighbours to diagonalise spaces of scalar-valued algebraic modular forms. We conjecture most of the global Arthur parameters, and prove several of them using theta series, in the manner of Ikeda and Yamana. We find instances of congruences for non-parallel weight Hilbert modular forms. Turning to the genus of Hermitian lattices of rank 12 over the Eisenstein integers, even and unimodular over Z, we prove a conjecture of Hentschel, Krieg and Nebe, identifying a certain linear combination of theta series as an Hermitian Ikeda lift, and we prove that another is an Hermitian Miyawaki lift.

Iaith wreiddiolSaesneg
Tudalennau (o-i)29-67
Nifer y tudalennau39
CyfnodolynAbhandlungen aus dem Mathematischen Seminar der Universitat Hamburg
Cyfrol91
Rhif cyhoeddi1
Dyddiad ar-lein cynnar20 Chwef 2021
Dynodwyr Gwrthrych Digidol (DOIs)
StatwsCyhoeddwyd - Ebr 2021
Cyhoeddwyd yn allanolIe

Ôl bys

Gweld gwybodaeth am bynciau ymchwil 'Automorphic forms for some even unimodular lattices'. Gyda’i gilydd, maen nhw’n ffurfio ôl bys unigryw.

Dyfynnu hyn